5 research outputs found

    Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites

    Get PDF
    Frontiers in Microbiology 6 (2015): 797 This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permissionCyanobacteria are thought to play a key role in carbonate formation due to their metabolic activity, but other organisms carrying out oxygenic photosynthesis (photosynthetic eukaryotes) or other metabolisms (e.g., anoxygenic photosynthesis, sulfate reduction), may also contribute to carbonate formation. To obtain more quantitative information than that provided by more classical PCR-dependent methods, we studied the microbial diversity of microbialites from the Alchichica crater lake (Mexico) by mining for 16S/18S rRNA genes in metagenomes obtained by direct sequencing of environmental DNA. We studied samples collected at the Western (AL-W) and Northern (AL-N) shores of the lake and, at the latter site, along a depth gradient (1, 5, 10, and 15 m depth). The associated microbial communities were mainly composed of bacteria, most of which seemed heterotrophic, whereas archaea were negligible. Eukaryotes composed a relatively minor fraction dominated by photosynthetic lineages, diatoms in AL-W, influenced by Si-rich seepage waters, and green algae in AL-N samples. Members of the Gammaproteobacteria and Alphaproteobacteria classes of Proteobacteria, Cyanobacteria, and Bacteroidetes were the most abundant bacterial taxa, followed by Planctomycetes, Deltaproteobacteria (Proteobacteria), Verrucomicrobia, Actinobacteria, Firmicutes, and Chloroflexi. Community composition varied among sites and with depth. Although cyanobacteria were the most important bacterial group contributing to the carbonate precipitation potential, photosynthetic eukaryotes, anoxygenic photosynthesizers and sulfate reducers were also very abundant. Cyanobacteria affiliated to Pleurocapsales largely increased with depth. Scanning electron microscopy (SEM) observations showed considerable areas of aragonite-encrusted Pleurocapsa-like cyanobacteria at microscale. Multivariate statistical analyses showed a strong positive correlation of Pleurocapsales and Chroococcales with aragonite formation at macroscale, and suggest a potential causal link. Despite the previous identification of intracellularly calcifying cyanobacteria in Alchichica microbialites, most carbonate precipitation seems extracellular in this systemWe are grateful to Eleonor Cortés for help and good company during the field trip and to Eberto Novelo for helpful discussions at the UNAM lab. This research was funded by the European Research Council Grants ProtistWorld (PI PL-G., Grant Agreement no. 322669) and CALCYAN (PI KB, Grant Agreement no. 307110) under the European Union’s Seventh Framework Program and the RTP Génomique environnementale of the CNRS (project MetaStrom, PI DM

    A theropod trackway providing evidence of a pathological foot from the exceptional locality of Las Hoyas (upper Barremian, Serranía de Cuenca, Spain)

    Full text link
    We describe a trackway (LH-Mg-10-16) occurring in laminated carbonated limestones of the Las Hoyas locality, Serranía de Cuenca, Spain. It is unmistakably a large theropod dinosaur trackway encompassing two unusual aspects, namely, wide-steps, and a set of equally deformed left footprints (with a dislocated digit). The layer also preserves other vertebrate trails (fish Undichna) and different impressions in the sediment. To address these complex settings, we devised a multidisciplinary approach, including the ichnological and taphonomical descriptions, characterisation of the rock lithofacies using thin-sections, 3D structured-light digitalisation with a high precision of 200-400 μm, and a geometric morphometric comparison with a large sample of bipedal dinosaur trackways. Sedimentary analyses showed that the trackway was produced in a humid, benthonic microbial mat, the consistency and plasticity of which enabled the preservation of the details of the movement of the animal. The results of the geometric analysis indicate that the 'wide-steps' of the trackway is not unusual compared to other trackways, providing evidence that it was made by a single individual with an estimated hip height approximately 2 m. Analogous pathologies in extant archosaurs that yield the combination of wide steps and deformed digits in the same trackway were considered. All results mutually support the hypothesis that a large theropod dinosaur, with a pathological foot, generated the trackway as it crossed an area of shallow water while slowly walking towards the main water source, thus stepping steadily over the benthonic mat over which multiple fish were swimming

    Involvement of microbial mats in delayed decay: an experimental essay on fish preservation

    Get PDF
    Microbial mats have been implicated in exceptional fossil preservation. Few analyses have addressed how these complex-multilayered biofilms promote fossil preservation. The sequence of changes during decay of neon tetra fish were tracked up to 27 months, and their decomposition in mats was compared against nonmat sediments (control fish). Statistically significant differences in quantitative variables (length, width, and thickness) are provided (ANOVA test, in all cases, P, 0.001). Changes in the qualitative features (body-head, fins, scale connection, and eye and body coloration) were phenetically analyzed resulting in two clusters and highlighting that notable differences in decay began at day 15. Mat fish how a delayed decomposition maintaining the external and internal body integrity, in which soft organs were preserved after 27 months as shown by Magnetic Resonance Imaging. We discuss how the organization, structure, and activity of this community are interrelated, favoring exceptional preservation. Microbial mats entomb the fish from the earliest stages, forming a Ca-rich coat over the carcass while embedding it in an anoxic condition. This quick entombment provides important protection against abiotic and/or biotic agents
    corecore