252 research outputs found

    Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

    Full text link
    Whether BDs form as stars through gravitational collapse ("star-like") or BDs and some very low-mass stars constitute a separate population which form alongside stars comparable to the population of planets, e.g. through circumstellar disk ("peripheral") fragmentation, is one of the key questions of the star-formation problem. For young stars in Taurus-Auriga the binary fraction is large with little dependence on primary mass above ~0.2Msun, while for BDs it is <10%. We investigate a case in which BDs in Taurus formed dominantly through peripheral fragmentation. The decline of the binary frequency in the transition region between star-like and peripheral formation is modelled. A dynamical population synthesis model is employed in which stellar binary formation is universal. Peripheral objects form separately in circumstellar disks with a distinctive initial mass function (IMF), own orbital parameter distributions for binaries and a low binary fraction. A small amount of dynamical processing of the stellar component is accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. The binary fraction declines strongly between the mass-limits for star-like and peripheral formation. The location of characteristic features and the steepness depend on these mass-limits. Such a trend might be unique to low density regions hosting dynamically unprocessed binary populations. The existence of a strong decline in the binary fraction -- primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star forming region. It is a test of the (non-)continuity of star formation along the mass-scale, the separateness of the stellar and BD populations and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.Comment: accepted for publication in A&A, 11 pages, 4 figures, 1 tabl

    Beryllium anomalies in solar-type field stars

    Full text link
    We present a study of beryllium (Be) abundances in a large sample of field solar-type dwarfs and sub-giants spanning a large range of effective temperatures. The analysis shows that Be is severely depleted for F stars, as expected by the light-element depletion models. However, we also show that Beryllium abundances decrease with decreasing temperature for stars cooler than ∌\sim6000 K, a result that cannot be explained by current theoretical models including rotational mixing, but that is, at least in part, expected from the models that take into account internal wave physics. In particular, the light element abundances of the coolest and youngest stars in our sample suggest that Be, as well as lithium (Li), has already been burned early during their evolution. Furthermore, we find strong evidence for the existence of a Be-gap for solar-temperature stars. The analysis of Li and Be abundances in the sub-giants of our sample also shows the presence of one case that has still detectable amounts of Li, while Be is severely depleted. Finally, we compare the derived Be abundances with Li abundances derived using the same set of stellar parameters. This gives us the possibility to explore the temperatures for which the onset of Li and Be depletion occurs.Comment: 16 pages, 13 figures, accepted for publication in Astronomy & Astrophysic

    Beryllium abundances in stars hosting giant planets

    Get PDF
    We have derived beryllium abundances in a wide sample of stars hosting planets, with spectral types in the range F7V-K0V, aimed at studying in detail the effects of the presence of planets on the structure and evolution of the associated stars. Predictions from current models are compared with the derived abundances and suggestions are provided to explain the observed inconsistencies. We show that while still not clear, the results suggest that theoretical models may have to be revised for stars with Teff<5500K. On the other hand, a comparison between planet host and non-planet host stars shows no clear difference between both populations. Although preliminary, this result favors a ``primordial'' origin for the metallicity ``excess'' observed for the planetary host stars. Under this assumption, i.e. that there would be no differences between stars with and without giant planets, the light element depletion pattern of our sample of stars may also be used to further investigate and constraint Li and Be depletion mechanisms.Comment: A&A in press -- accepted on the 22/02/2002 (11 pages, 6 figures included

    Are beryllium abundances anomalous in stars with giant planets?

    Full text link
    In this paper we present beryllium (Be) abundances in a large sample of 41 extra-solar planet host stars, and for 29 stars without any known planetary-mass companion, spanning a large range of effective temperatures. The Be abundances were derived through spectral synthesis done in standard Local Thermodynamic Equilibrium, using spectra obtained with various instruments. The results seem to confirm that overall, planet-host stars have ``normal'' Be abundances, although a small, but not significant, difference might be present. This result is discussed, and we show that this difference is probably not due to any stellar ``pollution'' events. In other words, our results support the idea that the high-metal content of planet-host stars has, overall, a ``primordial'' origin. However, we also find a small subset of planet-host late-F and early-G dwarfs that might have higher than average Be abundances. The reason for the offset is not clear, and might be related either to the engulfment of planetary material, to galactic chemical evolution effects, or to stellar-mass differences for stars of similar temperature.Comment: 15 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    Lithium and Hα in stars and brown dwarfs of σ Orionis

    Get PDF
    We present intermediate- and low-resolution optical spectra around Hα and Li I λ6708 Å for a sample of 25 low mass stars and 2 brown dwarfs with confirmed membership in the pre-main sequence stellar σ Orionis cluster. Our observations are intended to investigate the age of the cluster. The spectral types derived for our target sample are found to be in the range K6–M8.5, which corresponds to a mass interval of roughly 1.2–0.02 M⊙ on the basis of state-of-the-art evolutionary models. Radial velocities (except for one object) are found to be consistent with membership in the Orion complex. All cluster members show considerable Hα emission and the Li I resonance doublet in absorption, which is typical of very young ages. We find that our pseudo-equivalent widths of Hα and Li I (measured relative to the observed local pseudo-continuum formed by molecular absorptions) appear rather dispersed (and intense in the case of Hα) for objects cooler than M3.5 spectral class, occurring at the approximate mass where low mass stars are expected to become fully convective. The least massive brown dwarf in our sample, S Ori 45 (M8.5, ~0.02 M⊙), displays variable Hα emission and a radial velocity that differs from the cluster mean velocity. Tentative detection of forbidden lines in emission indicates that this brown dwarf may be accreting mass from a surrounding disk. We also present recent computations of Li  I λ6708 Å curves of growth for low gravities and for the temperature interval (about 4000–2600 K) of our sample. The comparison of our observations to these computations allows us to infer that no lithium depletion has yet taken place in σ Orionis, and that the observed pseudo-equivalent widths are consistent with a cluster initial lithium abundance close to the cosmic value. Hence, the upper limit to the σ Orionis cluster age can be set at 8 Myr, with a most likely value around 2–4 Myr

    High spatial resolution optical imaging of the multiple T Tauri system LkH{\alpha} 262/LkH{\alpha} 263

    Full text link
    We report high spatial resolution i' band imaging of the multiple T Tauri system LkHα\alpha 262/LkHα\alpha 263 obtained during the first commissioning period of the Adaptive Optics Lucky Imager (AOLI) at the 4.2 m William Herschel Telescope, using its Lucky Imaging mode. AOLI images have provided photometry for each of the two components LkHα\alpha 263 A and B (0.41 arcsec separation) and marginal evidence for an unresolved binary or a disc in LkHα\alpha 262. The AOLI data combined with previously available and newly obtained optical and infrared imaging show that the three components of LkHα\alpha 263 are co-moving, that there is orbital motion in the AB pair, and, remarkably, that LkHα\alpha 262-263 is a common proper motion system with less than 1 mas/yr relative motion. We argue that this is a likely five-component gravitationally bounded system. According to BT-settl models the mass of each of the five components is close to 0.4 M⊙_{\odot} and the age is in the range 1-2 Myr. The presence of discs in some of the components offers an interesting opportunity to investigate the formation and evolution of discs in the early stages of multiple very low-mass systems. In particular, we provide tentative evidence that the disc in 263C could be coplanar with the orbit of 263AB.Comment: 11 pages, 7 figures, Accepted 2016 May

    Planck intermediate results: XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies

    Get PDF
    The dust-Hi correlation is used to characterize the emission properties of dust in the diffuse interstellar medium (ISM) from far infrared wavelengths to microwave frequencies. The field of this investigation encompasses the part of the southern sky best suited to study the cosmic infrared and microwave backgrounds. We cross-correlate sky maps from Planck, the Wilkinson Microwave Anisotropy Probe (WMAP), and the diffuse infrared background experiment (DIRBE), at 17 frequencies from 23 to 3000 GHz, with the Parkes survey of the 21 cm line emission of neutral atomic hydrogen, over a contiguous area of 7500 deg2 centred on the southern Galactic pole. We present a general methodology to study the dust-H i correlation over the sky, including simulations to quantify uncertainties. Our analysis yields four specific results. (1) We map the temperature, submillimetre emissivity, and opacity of the dust per H-atom. The dust temperature is observed to be anti-correlated with the dust emissivity and opacity. We interpret this result as evidence of dust evolution within the diffuse ISM. The mean dust opacity is measured to be (7.1 ± 0.6) × 10-27 cm2 H-1 × (v/353 GHz) 1.53 ± 0.03for 100 ≀ v ≀ 353 GHz. This is a reference value to estimate hydrogen column densities from dust emission at submillimetre and millimetre wavelengths. (2) We map the spectral index ÎČmm of dust emission at millimetre wavelengths (defined here as v ≀ 353GHz), and find it to be remarkably constant at ÎČmm = 1.51 ± 0.13. We compare it with the far infrared spectral index ÎČFIR derived from greybody fits at higher frequencies, and find a systematic difference, ÎČmm -ÎČFIR = -0.15, which suggests that the dust spectral energy distribution (SED) flattens at v ≀ 353 GHz. (3) We present spectral fits of the microwave emission correlated with Hi from 23 to 353 GHz, which separate dust and anomalous microwave emission (AME). We show that the flattening of the dust SED can be accounted for with an additional component with a blackbody spectrum. This additional component, which accounts for (26 ± 6)% of the dust emission at 100GHz, could represent magnetic dipole emission. Alternatively, it could account for an increasing contribution of carbon dust, or a flattening of the emissivity of amorphous silicates, at millimetre wavelengths. These interpretations make different predictions for the dust polarization SED. (4) We analyse the residuals of the dust-Hi correlation. We identify a Galactic contribution to these residuals, which we model with variations of the dust emissivity on angular scales smaller than that of our correlation analysis. This model of the residuals is used to quantify uncertainties of the CIB power spectrum in a companion Planck paper.© ESO 2014.The Planck Collaboration acknowledges support from: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nÂș 267934.Peer Reviewe
    • 

    corecore