3,185 research outputs found

    Localization Properties of Quantized Magnetostatic Modes in Nanocubes

    Full text link
    We investigate the dynamical properties of a system of interacting magnetic dipoles disposed in sites of an sc lattice and forming a cubic-shaped sample of size determined by the cube edge length (N-1)a (a being the lattice constant, N representing the number of dipolar planes). The dipolar field resulting from the dipole-dipole interactions is calculated numerically in points of the axis connecting opposite cube face centers (central axis) by collecting individual contributions to this field coming from each of the N atomic planes perpendicular to the central axis. The applied magnetic field is assumed to be oriented along the central axis, magnetizing uniformly the whole sample, all the dipoles being aligned parallelly in the direction of the applied field. The frequency spectrum of magnetostatic waves propagating in the direction of the applied field is found numerically by solving the Landau-Lifshitz equation of motion including the local (nonhomogeneous) dipolar field component; the mode amplitude spatial distributions (mode profiles) are depicted as well. It is found that only the two energetically highest modes have bulk-extended character. All the remaining modes are of localized nature; more precisely, the modes forming the lower part of the spectrum are localized in the subsurface region, while the upper-spectrum modes are localized around the sample center. We show that the mode localization regions narrow down as the cube size, N, increases (we investigated the range of N=21 to N=101), and in sufficiently large cubes one obtains practically only center-localized and surface-localized magnetostatic modes.Comment: 20 pages, 9 figures in postscript, useing Revtex4.cl

    Area Distribution of Elastic Brownian Motion

    Full text link
    We calculate the excursion and meander area distributions of the elastic Brownian motion by using the self adjoint extension of the Hamiltonian of the free quantum particle on the half line. We also give some comments on the area of the Brownian motion bridge on the real line with the origin removed. We will stress on the power of self adjoint extension to investigate different possible boundary conditions for the stochastic processes.Comment: 18 pages, published versio

    (In)finite extensions of algebras from their Inonu-Wigner contractions

    Full text link
    The way to obtain massive non-relativistic states from the Poincare algebra is twofold. First, following Inonu and Wigner the Poincare algebra has to be contracted to the Galilean one. Second, the Galilean algebra is to be extended to include the central mass operator. We show that the central extension might be properly encoded in the non-relativistic contraction. In fact, any Inonu-Wigner contraction of one algebra to another, corresponds to an infinite tower of abelian extensions of the latter. The proposed method is straightforward and holds for both central and non-central extensions. Apart from the Bargmann (non-zero mass) extension of the Galilean algebra, our list of examples includes the Weyl algebra obtained from an extension of the contracted SO(3) algebra, the Carrollian (ultra-relativistic) contraction of the Poincare algebra, the exotic Newton-Hooke algebra and some others. The paper is dedicated to the memory of Laurent Houart (1967-2011).Comment: 7 pages, revtex style; v2: Minor corrections, references added; v3: Typos correcte

    A theory of non-local linear drift wave transport

    Get PDF
    Transport events in turbulent tokamak plasmas often exhibit non-local or non-diffusive action at a distance features that so far have eluded a conclusive theoretical description. In this paper a theory of non-local transport is investigated through a Fokker-Planck equation with fractional velocity derivatives. A dispersion relation for density gradient driven linear drift modes is derived including the effects of the fractional velocity derivative in the Fokker-Planck equation. It is found that a small deviation (a few percent) from the Maxwellian distribution function alters the dispersion relation such that the growth rates are substantially increased and thereby may cause enhanced levels of transport.Comment: 22 pages, 2 figures. Manuscript submitted to Physics of Plasma

    Pressure Evolution of the Ferromagnetic and Field Re-entrant Superconductivity in URhGe

    Full text link
    Fine pressure (PP) and magnetic field (HH) tuning on the ferromagnetic superconductor URhGe are reported in order to clarify the interplay between the mass enhancement, low field superconductivity (SC) and field reentrant superconductivity (RSC) by electrical resistivity measurements. With increasing PP, the transition temperature and the upper critical field of the low field SC decrease slightly, while the RSC dome drastically shifts to higher fields and shrinks. The spin reorientation field HRH_{\rm R} also increases. At a pressure P1.8P\sim 1.8 GPa, the RSC has collapsed while the low field SC persists and may disappear only above 4 GPa. Via careful (P,H)(P, H) studies of the inelastic T2T^2 resistivity term, it is demonstrated that this drastic change is directly related with the PP dependence of the effective mass which determines the critical field of the low field SC and RSC on the basis of triplet SC without Pauli limiting field.Comment: 5 pages, 6 figures, to appear in Journal of the Physical Society of Japa

    Extremely Large and Anisotropic Upper Critical Field and the Ferromagnetic Instability in UCoGe

    Full text link
    Magnetoresistivity measurements with fine tuning of the field direction on high quality single crystals of the ferromagnetic superconductor UCoGe show anomalous anisotropy of the upper critical field H_c2. H_c2 for H // b-axis (H_c2^b) in the orthorhombic crystal structure is strongly enhanced with decreasing temperature with an S-shape and reaches nearly 20 T at 0 K. The temperature dependence of H_c2^a shows upward curvature with a low temperature value exceeding 30 T, while H_c2^c at 0 K is very small (~ 0.6 T). Contrary to conventional ferromagnets, the decrease of the Curie temperature with increasing field for H // b-axis marked by an enhancement of the effective mass of the conduction electrons appears to be the origin of the S-shaped H_c2^b curve. These results indicate that the field-induced ferromagnetic instability or magnetic quantum criticality reinforces superconductivity.Comment: 5 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp

    Modulating the phase transition temperature of giant magnetocaloric thin films by ion irradiation

    Full text link
    Magnetic refrigeration based on the magnetocaloric effect at room temperature is one of the most attractive alternative to the current gas compression/expansion method routinely employed. Nevertheless, in giant magnetocaloric materials, optimal refrigeration is restricted to the narrow temperature window of the phase transition (Tc). In this work, we present the possibility of varying this transition temperature into a same giant magnetocaloric material by ion irradiation. We demonstrate that the transition temperature of iron rhodium thin films can be tuned by the bombardment of ions of Ne 5+ with varying fluences up to 10 14 ions cm --2 , leading to optimal refrigeration over a large 270--380 K temperature window. The Tc modification is found to be due to the ion-induced disorder and to the density of new point-like defects. The variation of the phase transition temperature with the number of incident ions opens new perspectives in the conception of devices using giant magnetocaloric materials

    The fractional Schr\"{o}dinger operator and Toeplitz matrices

    Full text link
    Confining a quantum particle in a compact subinterval of the real line with Dirichlet boundary conditions, we identify the connection of the one-dimensional fractional Schr\"odinger operator with the truncated Toeplitz matrices. We determine the asymptotic behaviour of the product of eigenvalues for the α\alpha-stable symmetric laws by employing the Szeg\"o's strong limit theorem. The results of the present work can be applied to a recently proposed model for a particle hopping on a bounded interval in one dimension whose hopping probability is given a discrete representation of the fractional Laplacian.Comment: 10 pages, 2 figure

    Anyon wave equations and the noncommutative plane

    Get PDF
    The ``Jackiw-Nair'' non-relativistic limit of the relativistic anyon equations provides us with infinite-component wave equations of the Dirac-Majorana-Levy-Leblond type for the ``exotic'' particle, associated with the two-fold central extension of the planar Galilei group. An infinite dimensional representation of the Galilei group is found. The velocity operator is studied, and the observable coordinates describing a noncommutative plane are identified.Comment: 11 pages, typos correcte
    corecore