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Transport events in turbulent tokamak plasmas often exhibit non-local or non-diffusive action at a
distance features that so far have eluded a conclusive theoretical description. In this paper a theory
of non-local transport is investigated through a Fokker-Planck equation with fractional velocity
derivatives. A dispersion relation for density gradient driven linear drift modes is derived including
the effects of the fractional velocity derivative in the Fokker-Planck equation. It is found that a
small deviation (a few percent) from the Maxwellian distribution function alters the dispersion
relation such that the growth rates are substantially increased and thereby may cause enhanced
levels of transport. © 2011 American Institute of Physics. [doi:10.1063/1.3598295]

I. INTRODUCTION

Understanding anomalous transport in magnetically con-
fined plasmas is an outstanding issue in controlled fusion
research. A satisfactorily understanding of the non-local fea-
tures as well as the non-Gaussian probability distribution
functions (PDFs) found in experimental measurements of
particle and heat fluxes is still lacking. In particular, experi-
mental observations of the edge turbulence in the fusion
devices' show that in the scrape of layer (SOL), the plasma
fluctuations are characterized by non-Gaussian PDFs. It has
been recognized that the nature of the cross-field transport
through the SOL is dominated by turbulence with a signifi-
cant ballistic or non-local component where a diffusive
description is improper.” Moreover, the scaling of the con-
finement time t o L* with o <2 (Ref. 3) is typical in low-
confinement mode discharges, instead of the diffusion
induced result 7 o L2, where L is the system size. There is a
considerable amount of experimental evidence*™ and recent
numerical gyrokinetic'™'! and fluid'? simulations that
plasma turbulence in tokamaks is highly non-local.

In addition, intermittent turbulence is characterized by
patchy spatial structure that is bursty in time. The PDFs of
these intermittent events shows unimodal structure with
“elevated” tails that deviates from a Gaussian prediction.
The understanding of these events is at best limited."'>~!7
Moreover, the high possibility of confinement degradation
by intermittency strongly calls for a predictive theory.

A prominent candidate for explaining the suggestive
non-local features of plasma turbulence is the inclusion of a
fractional velocity derivative in the Fokker-Planck (FP)
equation leading to an inherently non-local description as
well as giving rise to non-Gaussian PDFs of, e.g., densities
and heat flux. The non-locality is introduced through the in-
tegral description of the fractional derivative,'®2° and the
non-Maxwellian distribution function drives the observed
PDFs of densities and heat flux far from Gaussian.

The aim of this study is to elucidate the effects of a non-
Maxwellian distribution function induced by the fractional
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velocity derivative in the Fokker-Planck equation. Some pre-
vious papers on plasma transport have used models including
a fractional derivative where the fractional derivative is
introduced on phenomenological premises.'*?° In the pres-
ent work we introduce the Levy statistics into the Langevin
equation thus yielding a fractional FP description. This
approach is similar to that of Ref. 21 resulting in a phenome-
nological description of the non-local effects in plasma tur-
bulence. Using fractional generalizations of the Liouville
equation, kinetic descriptions have been developed previ-
ously.???* It has been shown that the chaotic dynamics can
be described by using the FP equation with coordinate frac-
tional derivatives as a possible tool for the description of
anomalous diffusion.”* Much work has been devoted on
investigation of the Langevin equation with Levy white
noise, see Refs. 25-28, or related fractional FP equation.25
Furthermore, fractional derivatives have been introduced
into the FP framework in a similar manner as the present
work, %% but a study including drift waves is still called for.
To this end we quantify the effects of the fractional deriva-
tive in the FP equation in terms of a modified dispersion rela-
tion for density gradient driven linear plasma drift waves
where we have considered a case with constant external
magnetic field and a shear-less slab geometry. In order to
calculate an equilibrium PDF we use a model based on the
motion of a charged Levy particle in a constant external
magnetic field obeying non-Gaussian, Levy statistics. This
assumption is the natural generalization of the classical
example of the motion of a charged Brownian particle with
the usual Gaussian statistics.’ The fractional derivative is
represented with the Fourier transform containing a frac-
tional exponent. We find a relation for the deviation from
Maxwellian distribution described by ¢ through the quasi-
neutrality condition and the characteristics of the plasma
drift wave are fundamentally changed, i.e., the values of the
growth-rate y and real frequency  are significantly altered.
A deviation from the Maxwellian distribution function alters
the dispersion relation for the density gradient drift waves
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such that the growth rates are substantially increased and
thereby may cause enhanced levels of transport.

The paper is organized as follows. In Sec. II the mathe-
matical framework of the fractional FP equation (FFPE) is
introduced. In Sec. IIT a dispersion relation for the density
gradient driven drift modes using the FFPE are derived. In
Sec IV the deviations from a Maxwellian distribution func-
tion are investigated, and the dispersion relation is solved in
Sec. V. We conclude the paper with a results and discussion
in Sec. VL.

Il. FRACTIONAL FOKKER-PLANCK EQUATION

Following the theory of Brownian motion we write an
equation of motion for a colloidal particle in a background
medium as a Langevin equation of the following form>'

YA ()
Here, we assumed that the influence of the background me-
dium can be split into a dynamical friction, —vv, and a fluc-
tuating part, A(f), which is a Gaussian white noise. The
Gaussian white noise assumption is usually imposed in order
to obtain a Maxwellian velocity distribution describing the
equilibrium of the Brownian particle. This connection is due
to the relation between the Gaussian central limit theorem
and classical Boltzmann-Gibbs statistics.’> However, the
Gaussian central limit theorem is not unique, and a general-
ization of the Gaussian central limit theorem to the case of
summation of independent identically distributed random
variables described by long tailed distributions is performed
by Lévy,* and Khintchine.*” In this case the Lévy distribu-
tions replace the Gaussian in a generalized central limit
theorem.

The simplest case of generalized Brownian motion con-
sidered by West and Seshadri** is to assume for fluctuation
part, A(t), in Eq. (1) to be a white Lévy noise. Following the
approach used by Barkai® we find the Fractional Fokker-
Planck equation (FFPE) with fractional velocity derivatives
for shear-less slab geometry in the presence of a constant
external force as

OF OF

N FoF, 0
ot Var

m. v _VE(VFS)_"D

0"F,
8|V|0£7

@)

where s(= e, i) represents the particle species and 0 < o < 2.
Here, the term g“VF‘i is the fractional Riesz derivative. The frac-
tional differentiation may be represented through singular
integrals or by its Fourier transform as we will see later in Eq.
(4). Note that the connection to the integral representation
indicates that the model is inherently non-local in velocity
space. The diffusion coefficient, D, is related to the damping

term, v, according to a generalized Einstein relation

22T v
D=——— " 3
I'(1+a)m*! )

Here, T, is a generalized temperature, and taking force F to
represent the Lorentz force (due to a constant magnetic field
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and a zero-averaged electric field) acting on the particles of
species s with mass m; and I'(1+ o) is the Euler gamma
function. We find the solution by using the Fourier represen-
tation of Eq. (2) above as

OF
ot

OF,
ok’

+ (—k + Q (K" x b) + vk") = —DIK"["F,, 4)

where Q,=eB/my is the Larmor frequency of species s,

b = B/B is the unit vector in the direction of magnetic field,
and F is the characteristic function

Fs(k, k1) = JJdr dvexp(ik -r + k" - v)F(r,v;1), (5)

where we have denoted the wave-vector by k and the corre-
sponding wave vector for the velocity as k". We can rewrite
the kinetic equation by identification of time derivatives of
the wave vectors as

dF, OF,
dt ot

dk® OF
dr Ok

dkOF,
dt ok

0. (6)

We use the method of characteristics on the Egs. (4) and (6)
whereby we find that the characteristics are

OF
= —D[K'|"F,, 7
o = DIKT'F ™
dKk’ N
e —k + Q (K’ x b) + k", (8)
dk
5= 0. 9)

Following the method used in Refs. 29 and 30 the solution
corresponding to the homogenous and steady state system in
Fourier space is

Fy(k?, 1) = e = KR, (10)

In order to find the solution in real space we compute the
inverse Fourier transform of Eq. (10)

Fy(r,v) = C(r)

v v
J‘(“z‘l;'/‘; (i) BRI )
s

We define a new variable D = % where coefficient D is given
by the expression in Eq. (3). C(r) is a normalization factor
which remains to be defined. Taking the inverse Fourier
transform of the Eq. (11) for « =2 we get

2 1,2
v v
L1

Fy(r,v) :@e*(T) (12)

The unknown normalization factor C can be determined by
comparing the integrals of the Maxwellian distribution and
our distribution. In comparison the Maxwellian distribution
is defined as

(e y) = ns(r) oDV (13)

(\/EVT,s(r))3
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where Vr,(r) = /2T,(r)/my is the thermal velocity of spe-
cies s. By integrating the Maxwellian distribution over the
velocity space we find the density as

Jdqu (r,v) =2z J:O vidvs JO; . %

—(vi+vﬁ)/v%x(r)

X e = n,(r), (14)

whereas performing the same integration of the expression in
Eq. (12) we obtain

o o2
00 00 c(r) - (20
JdVFS(I',V) = ZHJ UJ_dUJ_J de%e ( w )

0

= 2732V2DC(r). (15)

We can now compare the two results obtained in Egs. (14)
and (15) and we find the following relation:

n(r)
213/2/2D°

The distribution function can now be determined by replac-
ing this expression into Eq. (12) for C(r) yielding

C(r) = (16)

(W)

a7)

We can easily recover the Maxwellian distribution in Eq.
(13) by setting =2 in the definition for D in Eq. (3) and
using that I'(3) = 2. Note that for a general o, the equilibrium
distribution is as follows:

F _ ns(r) ddekH oI KIviFKv)) , — 2]+ K )
o(rv) = 3/2 3/2°
2m3/2/2D ) (2n)
(18)
where
i
D=—"_ 19
rl+a)’ (19)

and we have introduced a generalized thermal velocity as

ZozflT“

Ve ==
T.s a—1 "
mS

(20)

The generalized equilibrium distribution including the
effects of the fractional velocity derivative in Eq. (18)
becomes

ny(r) dk", dk!
Fy(r,v) = g I
R W Y7 -1/2 7 3/2
w201+ )2 2V (2m)
o {KV LK) o F Hm(\kw +kf | ). Q1)

We will now determine the dispersion relation for density
gradient driven drift waves including the effects of the frac-
tional velocity differential operator.
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lll. THE DISPERSION RELATION

In order to quantify the non-local effects on drift waves
induced by the fractional differential operator we will deter-
mine the dispersion relation for density gradient driven drift
modes. We start by formulating the linearized gyro-kinetic
theory where the particle distribution function, averaged
over gyro-phase, is of the form (see Ref. 36)

fi(r,v) = Fy(r,v) + (2n)*

X Ofg (V). (22)

X dek dwexp(ik - r — iwr)

We assume that the turbulence is purely electrostatic and
neglect magnetic field fluctuations (6B = 0). For small devia-
tions from the local equilibrium we find the linearized gyro-
kinetic equation of the form

(-o+ kHUH)éfl:w(Uvai) + lkLUL)

x FS('X7 V)éd)k,u) = 07 (23)

e _
(0 — y) fJO(|QS|

CTV/{ dlnnx)

where w,; = is the drift wave frequency of spe-
cies s, and we assumed that the space dependence of F| is
only in the x direction perpendicular to the magnetic field as
well as for the density gradient. In the equation above, Jj is
the Bessel function of order zero, v is the parallel velocity,
vy =0 +v )1/ % is the perpendicular veloc1ty, and hence
we write the total speed as v = (v + vH) 12 Inserting the
expression for F from the Eq. (21) in Eq. (23) and rearrang-
ing the terms, we find the perturbed distribution 9 fy ., as

s Cs | (D — Wiy
|

w]-’o(|Qs|lkﬂu)

T [k —
50 A0
“om2(C(1+ )"V 2VE]
v v Ve
ARLAK] kv ki) - )
(2 )3/2

(24)

Here, the wave vector perpendicular to magnetic field is
k= (k +k2)1/ 2. The gyro-kinetic Equation (24) is com-
plemented w1th Poisson equation for the electric potential.
For fluctuations with wave vectors much smaller than the
Debye wave vector, the Poisson equation becomes the quasi-
neutrality condition

Z esony , =0, (25)
S

where the density fluctuation is related to the distribution
function through

e _ N
By = = T+ | dv Jo(19u ke )R o, 00).

(26)

In the above equation we have separated the adiabatic
response (first term on the right hand side) from the non-adi-
abatic response (second term on the right hand side). We
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have to keep in mind that the density n; coming from the
Fy(x,v) in the adiabatic response is also given by Eq. (21),
and for a general 0 < o < 2 the adiabatic response can be dif-
ferent than that calculated by Maxwellian distribution of Eq.
(13). Using the quasi-neutrality condition (25) we find the
dispersion equation which determines the eigenfrequencies
as a function of the wave vector, ® = (k) =w, (K) + iy(k).
In the simplest case we consider a plasma consisting of elec-
trons and a single species of singly charged ions with the
equal temperatures. For the density fluctuation therefore we
have

5”;,(0 = - ( ) 5¢kw[MadS +Mk (u] (27)

Therefore, the dispersion equation as in the Ref. 36 is
Mt +Mkw = —M“ — M;( KoR (28)

where

4 J 1 Jdkidk”
M = | dv
2m32(0(1 +a)) "7 /2VE, ) (2m)*?

/o

Ve
X e (kivLJrk\\VH) 1+7 1(|k! [ Jr|k I* ) (29)

gives the adiabatic contribution, and
W — Wy

M, = |dv|———|Jo(b \%

v J V{knvn—W] olbs01/Vrs)
1
X 12

21+ )2V,
JdkL dkH
(271)3/2

YK ) R R (30)

gives the non-adiabatic contribution. Here, by =k, V7 /Q,. If
we take o =2 in Eq. (28) we recover the dispersion equation
for a Maxwellian distribution as in the Ref. 36.

A. Adiabatic response

First, we may analyze the contribution from the adia-
batic parts of the dispersion relation only by ignoring all fluc-
tuations, yielding

M) = [pec]. (31)
In addition, utilizing the quasi-neutrality condition while
neglecting the density gradient in the system we have n; = n,,
therefore o, and o; become connected through Eq. (31). This
indicates that the deviation from a Maxwellian distribution
described by « for electrons and ions becomes dependent on
each other. We will get back to this relation in later sections.

IV. DEVIATIONS FROM A MAXWELLIAN
DISTRIBUTION FUNCTION

We will now turn our attention to the problem of solving
the dispersion relation described by Eq. (28). In order to
solve this dispersion equation we use the method proposed in
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Ref. 36 with the difference that here we have to perform
additional integrations over k”. We have

O s z(2)T(by), (32)

MS —
k.o |k” |VT,X

where the plasma dispersion function is
Vrs J > ®(v))
V4 == d
(§S) ﬁ —00 ! u— és —io

with u=v),/V 7, & = /(|k) |Vy) and the function ®(v))) is

] ;o (33)

1
(D(UH) = Yy -
V2AT(1 4+ )™ 2V
dk} Vi
H —ikj M T xx(‘k | )
X e Mg T T (34)
J(Zn)l/z

The integral over v, can be written in a general way as
F(b) =23, | amw oo, 69)
“Jo

where w = v, /Vry, ¥y = J3(bsv, /Vry) and

1
V2T + ) 2V,

dk" - VT
« J(2 l)e*lkﬂLe (k[ ). (36)
T

(D(Ul) =

The analytical solutions for integrals over k” with an arbi-
trary o in Eqgs. (34) and (36) require rather tedious calcula-
tions. Instead we consider an infinitesimal deviation of the
form o=2—¢, where 0 <¢ <2 and expand the terms
depending on « in the Eqgs. (34) and (36) around ¢=0 as
follows:

! (k)

V@ + D) P °

D1 /4p=iVE KT

+eA(K) + O,  (37)

Vrs
where
A(K") = ﬂ{—s + 2y — 4VE K+ 29 VE [k
y11/4 \/? T.s EVTs
+ 2log[Vr,| + ZV%S log[Vr 4] |k"|2
+2V7 |k log[|k°[]}. (38)
Here, we have used the Euler-Mascheroni constant

ve=0.57721. The first term in Eq. (37) will produce

2 2
e ! e

O(u) = —7 and d(w) = 7 (39)
VT,x T,s
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which give the Maxwellian adiabatic response
M =1, (40)

By using the expansion defined by the expression (37) in
Egs. (29) and (29), the adiabatic and non-adiabatic part of
the dispersion relation M“** and My, ,, are as follows:

M =1 (2 Joo d Jood ! Jdkidk'v
WS =1+ (2n v v
I 0 €1 LZ\/§E3/2 (27'[)3/2

—00

% e—i(kij+kﬁvH)A(kvL)A( ﬁ))g + 0[8]2 — 1 + gWds

(41)
and
00 00 W — Wiy
Mlv(w =2n J_ dDH J dvivi [m} \Ps(bsUL/VTs)
o0 0 (gl
o %e—@iﬂﬁ)/ﬁ_x(r)
(VaVr(r))

— Wys

2 d d | W(bsv1 /Vry
+< nLo ‘l Jo o Lw—w] (b0 / V)

1 dkﬁ-dkﬁ 7i(kv VL+kPV) v v

+ O] =Ny, + Wy, (42)

k.o

Inserting these relations we may rewrite the dispersion rela-
tion (28) in the form

(1+Ni) +e(W + Wi ,)
= —(1+Nio) = eW + Wi ,,)- (43)
The first terms on the right and left hand sides generate the
usual contributions to the dispersion equation as in Ref. 36,

and the terms proportional to ¢ generate the non-Maxwellian
contributions where we have

s 7(0—(1)*1S

=—" r 44
k,o |k\| ‘VT,S (bs)v ( )

with the usual plasma dispersion function Z(&,) written as

1 %0 . 1
Z(és) = ﬁLima—‘O J due™ {m] ) (45)
and
['(by) = zj dwwe ™ W (byw). (46)
0

The effects of the fractional velocity derivative can be boiled
down to a non-Maxwellian contribution of the form

s T Wy

o ZEI éx
k, ‘k” |VT,s ( )

La(bs), (47)

where the non-Maxwellian plasma dispersion function is
given by
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‘ o0 0]
Zz:(és) = %Limaﬁo J du [%

with the function @(v))) being

] ;o (48)

D(v)) = ijexp(—zklv”)/\(k). (49)

It is important to note that the deviation from Maxwellian is
different for the different species (electrons and ions). In the
rest of Sec. IV, we will quantify the deviations. The non-
Maxwellian contribution to Eq. (35) is

I, (by) zzv;_sj dww\¥ (bw)®(v,), (50)
0
where
1 (dk o .
O(v,) = WJ Soew(-ikeAKD). 6D

To estimate the non-Maxwellian contribution we need to
determine the inverse Fourier transforms of the Egs. (49) and
(51) resulting in

1 2
O(z) = ey, L { —4(=2+yp) + (=T +4yp)
8VT,5
- B,
+2log[Vrs| + 2¢7 1F, 232 (52)

with z={u,w} and |F[a;b,z] denoting Kummer’s confluent
hypergeometric function. Therefore we can write

weadss i JOO d ro Aw® (1) D(w) (53)
» = u waw(u w).
v 0

By inserting typical values for the plasma parameters from
Ref. 9 we find the velocities as V., =5.93 x 10°[cm/s] and
V= 1.38 x 10%[cm/s], and we obtain

—00

Wede = 33724, W = 23.6591. (54)

Following the adiabatic condition in Eq. (31) and the
expanded dispersion relation in Eq. (43) we obtain the fol-
lowing ratio between the non-Maxwellian contributions

. Wad,e
z_’ = Sadi = 1.42541. (55)

This relation means that if there is a deviation of the distribu-
tion function from the Maxwellian for plasma electrons, the
deviation from the Maxwellian for ions will be ~1.4 larger.

V. SOLUTIONS OF THE DISPERSION RELATION

We will solve the dispersion relation in terms of expan-
sions of the plasma dispersion function by noting that the
drift waves are defined in the frequency range
k) |Vri < @ < |kj||Vr, in evaluating Egs. (45) and (48). We
define the expansion parameter for electrons in powers of
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e = ®/(|k;|Vr.) < 1 and for ions we expand it in powers
of &' = (|k|Vri)/ow < 1, respectively. The Maxwellian
dispersion function Z(&;) has the same definition as in
Ref. 36

1 o 2 1
Z(ée) = \/_%Limo'*)o J7 due™ {m}

3
=2+ VR - 8) 1 0, 66)

whereas the non-Maxwellian plasma dispersion function
ZJ(&,) becomes

0 ()
Ze:(ée) = %Limaﬂo J du [u—f(iu)—za}
o VT,e . *© 1 ée
= Limgs_ Jioo du®d(u) wio " (a_io)
& & 4
£ L O . 57
* (u— izr)3 + (u— i0)4 +ol] >7)

For ions, using the expansion in powers of él-_l we can
rewrite the above integrals as a function of the expansion pa-
rameter as

. Y
Z(¢&) = %Lzm(Ho Jioo due [m}
= & & Ol (58)
and the non-Maxwellian Z,(¢;) becomes
Vi - D(u) Vi
Zg(éi) - ﬁleO-—A) J_oo dlxl |:I,[—él—l0':| = \/Elea_‘O
du® —
X JkioO u (M) (7@ — lG) (fl n iO’)z
ol (59)
(=& — i0)3 &+ ia)4 L

We can now evaluate the Maxwellian integrals of the forms
['(b,) and T'(b;)) assuming ¥, =1, ¥; =J3 (b, /Vri) we
get

r'(b,) = 2J dwwe™ =1, (60)

and

o0

I'(b) = 2J dwwe ™ W, (bw) = e "PTo(b;),  (61)

0

where Z, denotes modified Bessel function of the zeroth
order. The final result will be found after evaluating the non-
Maxwellian I',(b,) and I",(b;) are given as

T.(b,) = 2v%16J dww®(w) = 4.8 x 10°,  (62)
0
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and

{o.¢]
rs(b,-)zzv%‘,J dwwW¥ (bw)®(w) = 6.1 x 10*,  (63)
- Jo

where we have used Vy,=5.93 10°[cm/s], V;;=1.38
108[cm /s, and b; =0.1. Finally we can summarize different
terms in the dispersion relation (43) as

. _ 48 )
Nk,w - (ée - 0)*79) <_256 +T+ lﬁ(l - ée))7

Nio = (& = @) <—5il —;QS)e_b"/zfo(bi),
Wli,w = (éﬁ - (I)*,L’)Z“I(ée>r‘l:(be);
Wicw = (& = @.)Z(&)Tu(bi), (64)

where @, = w./|k|Vrs. Note that the non-Maxwellian
contributions in Egs. (57), (59), (62), and (63) have been cal-
culated numerically. By utilizing the found values of the
integrals above, we rewrite the dispersion relation (43) as
follows:

(1 + SEWad’e) + (ée - 6D*,e)

48 5

iR -2) + SeZs(ie)Fs(be)}-
= —(1 + W) — (& — @)

x{ (—5,4 —;éi3>e"i/zlo(bi) + s,»zg(i,m(b,»)}

(65)

X {—256 +

where W** are given in Eq. (54) and we will use the ratio
between ¢, and ¢; from Eq. (55).

VI. RESULTS AND DISCUSSION

We have derived a dispersion relation for drift waves
driven by a density gradient in a shear-less slab geometry
with constant magnetic field where the small deviation from
a Maxwellian distribution is described by e. Here we will
determine the quantitative effects on the real frequency and
growth rate as a function of this deviation. We start by
assuming that we have adiabatic electrons for which the dis-
persion Eq. (65) is

2+ £/(235 W + W) = (& — d)*,i){ ( -&' - ;iﬁ)
X e*”"/ZIo(b,‘) + SiZs(fi)rs(bi)}-

(66)

After rearranging the terms in the above equation we finally
get the following relation for ¢;:

28 4 (6 4058 — 6.8 — 0.50.]e " To(b)
o Wadior & 4 (@,,:&) — ENZo(&)To(by)

)

(67)
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FIG. 1. (Color) ¢ as a function of w and y where & =w+iy. We have
assumed b; =0.1, kH = 1073, and @, ; = —7.1 x 102 with d In n/dx=1.

where W' =2 35W¢ 4 W This relation gives the
possible deviation of the equilibrium PDF from the Maxwel-
lian PDF for a given plasma turbulence, i.e., &;. One has to
remember that only positive values of Re[¢] are physically
meaningful.

Using the same plasma parameters as was used in Egs.
(54), (61), and (63) we compute the term Zy(&;), and from
Eq. (59) we get

Vi .
Zz:(éi) = LleUHO{

N ! ro dud(u)

(=& —i0) )
1 <
— du®
+ . i0)3 Jioo u-du (u)}
—6.5x 1077 —3.8 x 1079¢
= 53 .

Here, those integrations omitted resulted in zero contribu-
tions, and rewriting Eq. (66) by using these explicit values
results in the expression for the deviation in Eq. (67) we
obtain

(68)

28 4 [E 4058 — 0,8 — 050, )e " To(by)
6638 — 3928 + 3920, + 230008

(69)

Figure 1 shows ¢; from Eq. (69) where &; = w + iy. Here, the
values of ®,y are normalized to |k|Vr7,;. We have assumed
parameter values b;=0.1, ky=10"", and @,; = 7.1 x 102
with d In n/dx=1. It is found that there is a threshold in the
growth rate y close to y =0.7 and that increasing to 1.0 only
increases the deviation from a Maxwellian from O to 0.03. It
should be noted that ¢ increases the excess kurtosis of the
distribution function by a similar amount thus a quite small
deviation from a Maxwellian can have rather a significant
impact.

In Fig. 2, the mode growth rate as a function of ¢; is
shown. Note that in this figure the values of growth rate are
the solutions of the Eq. (69) for a given ¢;, while in the Fig. 1
we solve Eq. (69) for ¢ at a given &;. As the dispersion equa-
tion is of 3rd order in @ three possible solutions exist; how-
ever, we are only interested in the solutions with non-zero

Phys. Plasmas 18, 062106 (2011)

1.00
0.95
0.90
0.85
0.80

0.75

0005 0010 0.015 0.020 0.025 0.030E

FIG. 2. 7y as a function of ¢. The same plasma parameters as in Fig. 1 are
used.

imaginary value, y > 0, corresponding to unstable situations.
It is shown in Fig. 2 that a deviation of & =0.01 yield an
increase of about 20% in the growth rate. Furthermore, the
growth rate increases almost linearly with increasing ¢;, and
such an increase in the growth rate will lead to a significant
increase in the level of anomalous flux.

In summary, we have derived a dispersion relation for
density gradient driven linear drift waves including the
effects coming from the inclusion of a fractional velocity de-
rivative in the Fokker-Planck equation in the case of constant
magnetic field and a shear-less slab geometry. The solutions
of this Fokker-Planck equation are the alpha-stable distribu-
tions. It has not yet been shown that in a direct way one can
derive the alpha-stable distribution function”’ from the
classical form of collision operator.>® One way may be to
construct a new type of collisional operator by considering a
fractal phase space and reformulate the collision operator on
this new space. However, such a discussion is outside the
scope of the present paper. Interestingly enough, we note
that non-local effects are observed in non-linear collisionless
fluid simulations of plasma turbulence where the non-local
transport showing Levy features is induced by the interaction
of the non-linear terms in the dynamical equations.'? The
non-local features of non-linear fluid models are indicated by
recent analytical theories using path-integral methods to
derive probability density functions of fluxes.'®

The fractional derivative is represented with the Fourier
transform containing a fractional exponent that we are able
to connect to the deviation from a Maxwellian distribution
described by e. The characteristics of the plasma drift wave
are fundamentally changed, i.e., the values of the growth-
rate y and real frequency o are significantly altered. A devia-
tion from the Maxwellian distribution function alters the dis-
persion relation for the density gradient drift waves such that
the growth rates are substantially increased and thereby may
cause enhanced levels of transport.
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