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Transport events in turbulent tokamak plasmas often exhibit non-local or non-diffusive action at a

distance features that so far have eluded a conclusive theoretical description. In this paper a theory

of non-local transport is investigated through a Fokker-Planck equation with fractional velocity

derivatives. A dispersion relation for density gradient driven linear drift modes is derived including

the effects of the fractional velocity derivative in the Fokker-Planck equation. It is found that a

small deviation (a few percent) from the Maxwellian distribution function alters the dispersion

relation such that the growth rates are substantially increased and thereby may cause enhanced

levels of transport. VC 2011 American Institute of Physics. [doi:10.1063/1.3598295]

I. INTRODUCTION

Understanding anomalous transport in magnetically con-

fined plasmas is an outstanding issue in controlled fusion

research. A satisfactorily understanding of the non-local fea-

tures as well as the non-Gaussian probability distribution

functions (PDFs) found in experimental measurements of

particle and heat fluxes is still lacking. In particular, experi-

mental observations of the edge turbulence in the fusion

devices1 show that in the scrape of layer (SOL), the plasma

fluctuations are characterized by non-Gaussian PDFs. It has

been recognized that the nature of the cross-field transport

through the SOL is dominated by turbulence with a signifi-

cant ballistic or non-local component where a diffusive

description is improper.2 Moreover, the scaling of the con-

finement time s a La with a< 2 (Ref. 3) is typical in low-

confinement mode discharges, instead of the diffusion

induced result s a L2, where L is the system size. There is a

considerable amount of experimental evidence4–9 and recent

numerical gyrokinetic10,11 and fluid12 simulations that

plasma turbulence in tokamaks is highly non-local.

In addition, intermittent turbulence is characterized by

patchy spatial structure that is bursty in time. The PDFs of

these intermittent events shows unimodal structure with

“elevated” tails that deviates from a Gaussian prediction.

The understanding of these events is at best limited.1,13–17

Moreover, the high possibility of confinement degradation

by intermittency strongly calls for a predictive theory.

A prominent candidate for explaining the suggestive

non-local features of plasma turbulence is the inclusion of a

fractional velocity derivative in the Fokker-Planck (FP)

equation leading to an inherently non-local description as

well as giving rise to non-Gaussian PDFs of, e.g., densities

and heat flux. The non-locality is introduced through the in-

tegral description of the fractional derivative,18–20 and the

non-Maxwellian distribution function drives the observed

PDFs of densities and heat flux far from Gaussian.

The aim of this study is to elucidate the effects of a non-

Maxwellian distribution function induced by the fractional

velocity derivative in the Fokker-Planck equation. Some pre-

vious papers on plasma transport have used models including

a fractional derivative where the fractional derivative is

introduced on phenomenological premises.19,20 In the pres-

ent work we introduce the Levy statistics into the Langevin

equation thus yielding a fractional FP description. This

approach is similar to that of Ref. 21 resulting in a phenome-

nological description of the non-local effects in plasma tur-

bulence. Using fractional generalizations of the Liouville

equation, kinetic descriptions have been developed previ-

ously.22,23 It has been shown that the chaotic dynamics can

be described by using the FP equation with coordinate frac-

tional derivatives as a possible tool for the description of

anomalous diffusion.24 Much work has been devoted on

investigation of the Langevin equation with Levy white

noise, see Refs. 25–28, or related fractional FP equation.25

Furthermore, fractional derivatives have been introduced

into the FP framework in a similar manner as the present

work,29,30 but a study including drift waves is still called for.

To this end we quantify the effects of the fractional deriva-

tive in the FP equation in terms of a modified dispersion rela-

tion for density gradient driven linear plasma drift waves

where we have considered a case with constant external

magnetic field and a shear-less slab geometry. In order to

calculate an equilibrium PDF we use a model based on the

motion of a charged Levy particle in a constant external

magnetic field obeying non-Gaussian, Levy statistics. This

assumption is the natural generalization of the classical

example of the motion of a charged Brownian particle with

the usual Gaussian statistics.31 The fractional derivative is

represented with the Fourier transform containing a frac-

tional exponent. We find a relation for the deviation from

Maxwellian distribution described by e through the quasi-

neutrality condition and the characteristics of the plasma

drift wave are fundamentally changed, i.e., the values of the

growth-rate c and real frequency x are significantly altered.

A deviation from the Maxwellian distribution function alters

the dispersion relation for the density gradient drift waves
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such that the growth rates are substantially increased and

thereby may cause enhanced levels of transport.

The paper is organized as follows. In Sec. II the mathe-

matical framework of the fractional FP equation (FFPE) is

introduced. In Sec. III a dispersion relation for the density

gradient driven drift modes using the FFPE are derived. In

Sec IV the deviations from a Maxwellian distribution func-

tion are investigated, and the dispersion relation is solved in

Sec. V. We conclude the paper with a results and discussion

in Sec. VI.

II. FRACTIONAL FOKKER-PLANCK EQUATION

Following the theory of Brownian motion we write an

equation of motion for a colloidal particle in a background

medium as a Langevin equation of the following form31

dv

dt
¼ ��vþ AðtÞ (1)

Here, we assumed that the influence of the background me-

dium can be split into a dynamical friction, ��v, and a fluc-

tuating part, A(t), which is a Gaussian white noise. The

Gaussian white noise assumption is usually imposed in order

to obtain a Maxwellian velocity distribution describing the

equilibrium of the Brownian particle. This connection is due

to the relation between the Gaussian central limit theorem

and classical Boltzmann-Gibbs statistics.32 However, the

Gaussian central limit theorem is not unique, and a general-

ization of the Gaussian central limit theorem to the case of

summation of independent identically distributed random

variables described by long tailed distributions is performed

by Lévy,33 and Khintchine.32 In this case the Lévy distribu-

tions replace the Gaussian in a generalized central limit

theorem.

The simplest case of generalized Brownian motion con-

sidered by West and Seshadri34 is to assume for fluctuation

part, A(t), in Eq. (1) to be a white Lévy noise. Following the

approach used by Barkai35 we find the Fractional Fokker-

Planck equation (FFPE) with fractional velocity derivatives

for shear-less slab geometry in the presence of a constant

external force as

@Fs

@t
þ v

@Fs

@r
þ F

ms

@Fs

@v
¼ � @

@v
ðvFsÞ þ D

@aFs

@jvja ; (2)

where s(¼ e, i) represents the particle species and 0 � a � 2.

Here, the term @aFs

@jvja is the fractional Riesz derivative. The frac-

tional differentiation may be represented through singular

integrals or by its Fourier transform as we will see later in Eq.

(4). Note that the connection to the integral representation

indicates that the model is inherently non-local in velocity

space. The diffusion coefficient, D, is related to the damping

term, �, according to a generalized Einstein relation35

D ¼ 2a�1Ta�

Cð1þ aÞma�1
s

: (3)

Here, Ta is a generalized temperature, and taking force F to

represent the Lorentz force (due to a constant magnetic field

and a zero-averaged electric field) acting on the particles of

species s with mass ms and C(1þ a) is the Euler gamma

function. We find the solution by using the Fourier represen-

tation of Eq. (2) above as

@F s

@t
þ ð�kþ Xsðkv � b̂Þ þ �kvÞ @F s

@kv ¼ �DjkvjaF s; (4)

where Xs¼ esB=msc is the Larmor frequency of species s,

b̂ ¼ B=B is the unit vector in the direction of magnetic field,

and F s is the characteristic function

F sðk; kv; tÞ ¼
ð ð

dr dv expðik � rþ ikv � vÞFsðr; v; tÞ; (5)

where we have denoted the wave-vector by k and the corre-

sponding wave vector for the velocity as kv. We can rewrite

the kinetic equation by identification of time derivatives of

the wave vectors as

dF s

dt
¼ @F s

@t
þ dkv

dt

@F s

@kv þ
dk

dt

@F s

@k
¼ 0: (6)

We use the method of characteristics on the Eqs. (4) and (6)

whereby we find that the characteristics are

@F s

@t
¼ �DjkvjaF s; (7)

dkv

dt
¼ �kþ Xsðkv � b̂Þ þ �kv; (8)

dk

dt
¼ 0: (9)

Following the method used in Refs. 29 and 30 the solution

corresponding to the homogenous and steady state system in

Fourier space is

F sðkv; tÞ ¼ e�
D
a�ðjk

v
?j

aþjkv
kj

aÞ: (10)

In order to find the solution in real space we compute the

inverse Fourier transform of Eq. (10)

Fsðr; vÞ ¼ CðrÞ
ð

dkv
?dkv

k

ð2pÞ3=2
e�iðkv

?v?þkv
kvkÞe�

D
a�ðjk

v
?j

aþjkv
kj

aÞ: (11)

We define a new variable D ¼ D
� where coefficient D is given

by the expression in Eq. (3). C(r) is a normalization factor

which remains to be defined. Taking the inverse Fourier

transform of the Eq. (11) for a¼ 2 we get

Fsðr; vÞ ¼
CðrÞ
D e

�
v2
?þv2

k
4D

� �
: (12)

The unknown normalization factor C can be determined by

comparing the integrals of the Maxwellian distribution and

our distribution. In comparison the Maxwellian distribution

is defined as

FM
s ðr; vÞ ¼

nsðrÞ
ð
ffiffiffi
p
p

VT;sðrÞÞ3
e
�ðv2

?þv2
kÞ=V2

T;sðrÞ; (13)
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where VT;sðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TsðrÞ=ms

p
is the thermal velocity of spe-

cies s. By integrating the Maxwellian distribution over the

velocity space we find the density asð
dvFM

s ðr; vÞ ¼ 2p
ð1

0

v?dv?

ð1
�1

dvk
nsðrÞ

ð
ffiffiffi
p
p

VT;sðrÞÞ3

� e
�ðv2

?þv2
kÞ=V2

T;sðrÞ ¼ nsðrÞ; (14)

whereas performing the same integration of the expression in

Eq. (12) we obtain

ð
dvFsðr; vÞ ¼ 2p

ð1
0

v?dv?

ð1
�1

dvk
CðrÞ
D e

�
v2
?þv2

k
4D

� �

¼ 2p3=2
ffiffiffiffiffiffiffi
2D
p

CðrÞ: (15)

We can now compare the two results obtained in Eqs. (14)

and (15) and we find the following relation:

CðrÞ ¼ nsðrÞ
2p3=2

ffiffiffiffiffiffiffi
2D
p : (16)

The distribution function can now be determined by replac-

ing this expression into Eq. (12) for C(r) yielding

Fsðr; vÞ ¼
nsðrÞ

2p3=2D
ffiffiffiffiffiffiffi
2D
p e

�
v2
?þv2

k
4D

� �
: (17)

We can easily recover the Maxwellian distribution in Eq.

(13) by setting a¼ 2 in the definition for D in Eq. (3) and

using that C(3)¼ 2. Note that for a general a, the equilibrium

distribution is as follows:

Fsðr; vÞ ¼
nsðrÞ

2p3=2
ffiffiffiffiffiffiffi
2D
p

ð
dkv
?dkv

k

ð2pÞ3=2
e�iðkv

?v?þkv
kvkÞe�

D
aðjk

v
?j

aþjkv
kj

aÞ;

(18)

where

D ¼
Va

T;s

Cð1þ aÞ ; (19)

and we have introduced a generalized thermal velocity as

Va
T;s ¼

2a�1Ta

ma�1
s

: (20)

The generalized equilibrium distribution including the

effects of the fractional velocity derivative in Eq. (18)

becomes

Fsðr; vÞ ¼
nsðrÞ

2p3=2ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffiffiffi
2Va

T;s

p
ð

dkv
?dkv

k

ð2pÞ3=2

� e�iðkv
?v?þkv

kvkÞe�
Va

T;s
Cð1þaÞaðjk

v
?j

aþjkv
kj

aÞ: (21)

We will now determine the dispersion relation for density

gradient driven drift waves including the effects of the frac-

tional velocity differential operator.

III. THE DISPERSION RELATION

In order to quantify the non-local effects on drift waves

induced by the fractional differential operator we will deter-

mine the dispersion relation for density gradient driven drift

modes. We start by formulating the linearized gyro-kinetic

theory where the particle distribution function, averaged

over gyro-phase, is of the form (see Ref. 36)

fsðr; vÞ ¼ Fsðr; vÞ þ ð2pÞ�4 �
ð ð

dk dx expðik � r� ixtÞ

� df s
k;xðvÞ: (22)

We assume that the turbulence is purely electrostatic and

neglect magnetic field fluctuations (dB¼ 0). For small devia-

tions from the local equilibrium we find the linearized gyro-

kinetic equation of the form

(-x+ kkvk)df s
k;xðvk; v?Þ þ ðx� x�sÞ

es

Ts
J0ðjXsj�1k?v?Þ

� Fsðx; vÞd/k;x ¼ 0; (23)

where x�s ¼ cTs

esB
ky � d ln nðxÞ

dx is the drift wave frequency of spe-

cies s, and we assumed that the space dependence of Fs is

only in the x direction perpendicular to the magnetic field as

well as for the density gradient. In the equation above, J0 is

the Bessel function of order zero, vjj is the parallel velocity,

v? � ðv2
x þ v2

yÞ
1=2

is the perpendicular velocity, and hence

we write the total speed as v ¼ ðv2
? þ v2

jjÞ
1=2

. Inserting the

expression for Fs from the Eq. (21) in Eq. (23) and rearrang-

ing the terms, we find the perturbed distribution d fk,x as

df s
k;xðvk; v?Þ ¼ �

es

Ts

x� x�s
kkvk � x

� �
J0ðjXsj�1k?v?Þ

� d/k;x
nsðrÞ

2p3=2ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffiffiffi
2Va

T;s

p
�
ð

dkv
?dkv

k

ð2pÞ3=2
e�iðkv

?v?þkv
kvkÞe�

Va
T;s

Cð1þaÞaðjk
v
?j

aþjkv
kj

aÞ:

(24)

Here, the wave vector perpendicular to magnetic field is

k? ¼ ðk2
x þ k2

yÞ
1=2

. The gyro-kinetic Equation (24) is com-

plemented with Poisson equation for the electric potential.

For fluctuations with wave vectors much smaller than the

Debye wave vector, the Poisson equation becomes the quasi-

neutrality condition X
s

esdns
k;x ¼ 0; (25)

where the density fluctuation is related to the distribution

function through

dns
k;x ¼ �

es

Ts
nsd/k;x þ

ð
dv J0ðjXsj�1k?v?Þdf s

k;xðvk; v?Þ:

(26)

In the above equation we have separated the adiabatic

response (first term on the right hand side) from the non-adi-

abatic response (second term on the right hand side). We
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have to keep in mind that the density ns coming from the

Fs(x,v) in the adiabatic response is also given by Eq. (21),

and for a general 0 � a � 2 the adiabatic response can be dif-

ferent than that calculated by Maxwellian distribution of Eq.

(13). Using the quasi-neutrality condition (25) we find the

dispersion equation which determines the eigenfrequencies

as a function of the wave vector, x ¼x (k) ¼xr (k)þ ic(k).

In the simplest case we consider a plasma consisting of elec-

trons and a single species of singly charged ions with the

equal temperatures. For the density fluctuation therefore we

have

dns
k;x ¼ �nsðrÞ

es

Ts
d/k;x½Mad;s þMs

k;x� (27)

Therefore, the dispersion equation as in the Ref. 36 is

Mad;e þMe
k;x ¼ �Mad;i �Mi

k;x; (28)

where

Mad;s ¼
ð

dv
1

2p3=2ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffiffiffi
2Va

T;s

p
ð

dkv
?dkv

k

ð2pÞ3=2

� e�iðkv
?v?þkv

kvkÞe�
Va

T;s
Cð1þaÞaðjk

v
?j

aþjkv
kj

aÞ; (29)

gives the adiabatic contribution, and

Ms
k;x ¼

ð
dv

x� x�s
kkvk � x

� �
J0ðbsv?=VTsÞ

� 1

2p3=2ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffiffiffi
2Va

T;s

p
�
ð

dkv
?dkv

k

ð2pÞ3=2
e�iðkv

?v?þkv
kvkÞe�

Va
T;s

Cð1þaÞaðjk
v
?j

aþjkv
kj

aÞ; (30)

gives the non-adiabatic contribution. Here, bs¼ k\VT,s=Xs. If

we take a¼ 2 in Eq. (28) we recover the dispersion equation

for a Maxwellian distribution as in the Ref. 36.

A. Adiabatic response

First, we may analyze the contribution from the adia-

batic parts of the dispersion relation only by ignoring all fluc-

tuations, yielding

jMad;ej ¼ jMad;ij: (31)

In addition, utilizing the quasi-neutrality condition while

neglecting the density gradient in the system we have ni¼ ne,

therefore ae and ai become connected through Eq. (31). This

indicates that the deviation from a Maxwellian distribution

described by a for electrons and ions becomes dependent on

each other. We will get back to this relation in later sections.

IV. DEVIATIONS FROM A MAXWELLIAN
DISTRIBUTION FUNCTION

We will now turn our attention to the problem of solving

the dispersion relation described by Eq. (28). In order to

solve this dispersion equation we use the method proposed in

Ref. 36 with the difference that here we have to perform

additional integrations over kv. We have

Ms
k;x ¼

x� x�;s
jkkjVT;s

ZðnsÞCðbsÞ; (32)

where the plasma dispersion function is

ZðnsÞ ¼
VT;sffiffiffi

p
p Limr!0

ð1
�1

du
UðvkÞ

u� ns � ir

� �
; (33)

with u¼ vjj=V Ts, ns ¼x =(jkjj jVTs) and the function U(vjj) is

UðvkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffiffiffi
2Va

T;s

pq

�
ð

dkv
k

ð2pÞ1=2
e�ikv

kvke�
Va

T;s
Cð1þaÞaðjk

v
kj

aÞ: (34)

The integral over v\ can be written in a general way as

CðbsÞ ¼ 2V2
T;s

ð1
0

dwwWsðbswÞUðv?Þ; (35)

where w ¼ v?=VTs; Ws ¼ J2
0ðbsv?=VTsÞ and

Uðv?Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffiffiffi
2Va

T;s

pq

�
ð

dkv
?

ð2pÞ e
�ikv

?v?e�
Va

T;s
Cð1þaÞaðjk

v
?j

aÞ: (36)

The analytical solutions for integrals over kv with an arbi-

trary a in Eqs. (34) and (36) require rather tedious calcula-

tions. Instead we consider an infinitesimal deviation of the

form a¼ 2� e, where 0 � e	 2 and expand the terms

depending on a in the Eqs. (34) and (36) around e¼ 0 as

follows:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffi

Va
T;s

pq e�
Va

T;s
Cð1þaÞaðjk

vjaÞ

¼ 21=4e�
1
4
V2

T;sjkvj2ffiffiffiffiffiffiffiffi
VT;s

p þ eKðkvÞ þ O½e2�; (37)

where

KðkvÞ ¼ e�
1
4
V2

T;sjkvj2

211=4
ffiffiffiffiffiffiffiffi
VT;s

p f�3þ 2cE � 4V2
T;sjkvj2 þ 2cEV2

T;sjkvj2

þ 2 log½VT;s� þ 2V2
T;s log½VT;s�jkvj2

þ 2V2
T;sjkvj2 log½jkvj�g: (38)

Here, we have used the Euler-Mascheroni constant

cE¼ 0.57721. The first term in Eq. (37) will produce

UðuÞ ¼ e�u2

V
3=2
T;s

; and UðwÞ ¼ e�w2

V
3=2
T;s

(39)
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which give the Maxwellian adiabatic response

Mad;s ¼ 1: (40)

By using the expansion defined by the expression (37) in

Eqs. (29) and (29), the adiabatic and non-adiabatic part of

the dispersion relation Mad,s and Ms
k;x are as follows:

Mad;s ¼ 1þ
�

2p
ð1
�1

dvk

ð1
0

dv?v?
1

2
ffiffiffi
2
p

p3=2

ð
dkv
?dkv

k

ð2pÞ3=2

� e�iðkv
?v?þkv

kvkÞKðkv
?ÞKðkv

kÞ
�

eþO½e�2 ¼ 1þ eWad;s

(41)

and

Ms
k;x ¼ 2p

ð1
�1

dvk

ð1
0

dv?v?
x� x�s
kkvk � x

� �
Wsðbsv?=VTsÞ

� 1

ð
ffiffiffi
p
p

VT;sðrÞÞ3
e
�ðv2

?þv2
kÞ=V2

T;sðrÞ

þ 2p
ð1
�1

dvk

ð1
0

dv?v?
x� x�s
kkvk � x

� �
Wsðbsv?=VTsÞ

�

� 1

2
ffiffiffi
2
p

p3=2

ð
dkv
?dkv

k

ð2pÞ3=2
e�iðkv

?v?þkv
kvkÞKðkv

?ÞKðkv
kÞ
�

e

þO½e�2 ¼ Ns
k;x þ eWs

k;x: (42)

Inserting these relations we may rewrite the dispersion rela-

tion (28) in the form

ð1þ Ne
k;xÞ þ eðWad;e þWe

k;xÞ
¼ �ð1þ Ni

k;xÞ � eðWad;i þWi
k;xÞ: (43)

The first terms on the right and left hand sides generate the

usual contributions to the dispersion equation as in Ref. 36,

and the terms proportional to e generate the non-Maxwellian

contributions where we have

Ns
k;x ¼

x� x�;s
jkkjVT;s

ZðnsÞCðbsÞ; (44)

with the usual plasma dispersion function Z(ns) written as

ZðnsÞ ¼
1ffiffiffi
p
p Limr!0

ð1
�1

due�u2 1

u� ns � ir

� �
; (45)

and

CðbsÞ ¼ 2

ð1
0

dwwe�w2

WsðbswÞ: (46)

The effects of the fractional velocity derivative can be boiled

down to a non-Maxwellian contribution of the form

Ws
k;x ¼

x� x�;s
jkkjVT;s

ZeðnsÞCeðbsÞ; (47)

where the non-Maxwellian plasma dispersion function is

given by

ZeðnsÞ ¼
VT;sffiffiffi

p
p Limr!0

ð1
�1

du
UðvkÞ

u� ns � ir

� �
; (48)

with the function U(vjj) being

UðvkÞ ¼
1

23=4

ð dkv
k

ð2pÞ1=2
expð�ikv

kvkÞKðkv
kÞ: (49)

It is important to note that the deviation from Maxwellian is

different for the different species (electrons and ions). In the

rest of Sec. IV, we will quantify the deviations. The non-

Maxwellian contribution to Eq. (35) is

CeðbsÞ ¼ 2V2
T;s

ð1
0

dwwWsðbswÞUðv?Þ; (50)

where

Uðv?Þ ¼
1

23=4

ð
dkv
?

ð2pÞ expð�ikv
?v?ÞKðkv

?Þ: (51)

To estimate the non-Maxwellian contribution we need to

determine the inverse Fourier transforms of the Eqs. (49) and

(51) resulting in

UðzÞ ¼ 1

8V
3=2
T;s

e�z2 � 4ð�2þ cEÞz2 þ ð�7þ 4 cEÞ
	

þ2 log½VT;s� þ 2ez2

1F1

3

2
;
1

2
;�z2

� �

(52)

with z¼fu,wg and 1F1[a;b;z] denoting Kummer’s confluent

hypergeometric function. Therefore we can write

Wad;s ¼
2V3

T;sffiffiffi
p
p

ð1
�1

du

ð1
0

wdwUðuÞUðwÞ: (53)

By inserting typical values for the plasma parameters from

Ref. 9 we find the velocities as VT,e¼ 5.93� 109[cm=s] and

VT,i¼ 1.38� 108[cm=s], and we obtain

Wad;e ¼ 33:724; Wad;i ¼ 23:6591: (54)

Following the adiabatic condition in Eq. (31) and the

expanded dispersion relation in Eq. (43) we obtain the fol-

lowing ratio between the non-Maxwellian contributions

ei

ee
¼ Wad;e

Wad;i
¼ 1:42541: (55)

This relation means that if there is a deviation of the distribu-

tion function from the Maxwellian for plasma electrons, the

deviation from the Maxwellian for ions will be 
1.4 larger.

V. SOLUTIONS OF THE DISPERSION RELATION

We will solve the dispersion relation in terms of expan-

sions of the plasma dispersion function by noting that the

drift waves are defined in the frequency range

jkjjjVTi 	 x	 jkjjjVTe in evaluating Eqs. (45) and (48). We

define the expansion parameter for electrons in powers of
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ne ¼ x=ðjkjjjVTeÞ 	 1 and for ions we expand it in powers

of n�1
i ¼ ðjkjjjVTiÞ=x	 1, respectively. The Maxwellian

dispersion function Z(ns) has the same definition as in

Ref. 36

ZðneÞ ¼
1ffiffiffi
p
p Limr!0

ð1
�1

due�u2 1

u� ne � ir

� �

¼ �2ne þ
4n3

e

3
þ i

ffiffiffi
p
p
ð1� n2

eÞ þ O½n4
e �; (56)

whereas the non-Maxwellian plasma dispersion function

Ze(ne) becomes

ZeðneÞ ¼
VT;effiffiffi

p
p Limr!0

ð1
�1

du
UðuÞ

u� ne � ir

� �

¼ VT;effiffiffi
p
p Limr!0

ð1
�1

duUðuÞ 1

u� ir
þ ne

ðu� irÞ2

"

þ n2
e

ðu� irÞ3
þ n3

e

ðu� irÞ4
þO½n4

e �
#
: (57)

For ions, using the expansion in powers of n�1
i we can

rewrite the above integrals as a function of the expansion pa-

rameter as

ZðniÞ ¼
1ffiffiffi
p
p Limr!0

ð1
�1

due�u2 1

u� ni � ir

� �

¼ �n�1
i �

1

2
n�3

i þO½n�5
i �; (58)

and the non-Maxwellian Ze(ni) becomes

ZeðniÞ ¼
VT;iffiffiffi

p
p Limr!0

ð1
�1

du
UðuÞ

u� ni � ir

� �
¼ VT;iffiffiffi

p
p Limr!0

�
ð1
�1

duUðuÞ 1

ð�ni � irÞ �
u

ðni þ irÞ2

"

þ u2

ð�ni � irÞ3
� u3

ðni þ irÞ4
þO½n�5

i �
#
: (59)

We can now evaluate the Maxwellian integrals of the forms

C(be) and C(bi) assuming We ¼ 1; Wi ¼ J2
0ðbiv?=VTiÞ we

get

CðbeÞ ¼ 2

ð1
0

dwwe�w2 ¼ 1; (60)

and

CðbiÞ ¼ 2

ð1
0

dwwe�w2

WeðbiwÞ ¼ e�bi=2I 0ðbiÞ; (61)

where I 0 denotes modified Bessel function of the zeroth

order. The final result will be found after evaluating the non-

Maxwellian Ce(be) and Ce(bi) are given as

CeðbeÞ ¼ 2V2
T;e

ð1
0

dwwUðwÞ ¼ 4:8� 105; (62)

and

CeðbiÞ ¼ 2V2
T;i

ð1
0

dwwWðbiwÞUðwÞ ¼ 6:1� 104; (63)

where we have used VT,e¼ 5.93 109[cm=s], VT,i¼ 1.38

108[cm=s], and bi¼ 0.1. Finally we can summarize different

terms in the dispersion relation (43) as

Ne
k;x ¼ ðne � �x�;eÞ �2ne þ

4n3
e

3
þ i

ffiffiffi
p
p
ð1� n2

eÞ
� �

;

Ni
k;x ¼ ðni � �x�;iÞ �n�1

i �
1

2
n�3

i

� �
e�bi=2I0ðbiÞ;

We
k;x ¼ ðne � �x�;eÞZeðneÞCeðbeÞ;

Wi
k;x ¼ ðni � �x�;iÞZeðniÞCeðbiÞ; (64)

where �x�;s ¼ x�;s=jkkjVT;s. Note that the non-Maxwellian

contributions in Eqs. (57), (59), (62), and (63) have been cal-

culated numerically. By utilizing the found values of the

integrals above, we rewrite the dispersion relation (43) as

follows:

ð1þ eeWad;eÞ þ ðne � �x�;eÞ

� �2ne þ
4n3

e

3
þ i

ffiffiffi
p
p
ð1� n2

eÞ þ eeZeðneÞCeðbeÞ
	 


:

¼ �ð1þ eiW
ad;iÞ � ðni � �x�;iÞ

� �n�1
i �

1

2
n�3

i

� �
e�bi=2I0ðbiÞ þ eiZeðniÞCeðbiÞ

	 

(65)

where Wad,s are given in Eq. (54) and we will use the ratio

between ee and ei from Eq. (55).

VI. RESULTS AND DISCUSSION

We have derived a dispersion relation for drift waves

driven by a density gradient in a shear-less slab geometry

with constant magnetic field where the small deviation from

a Maxwellian distribution is described by e. Here we will

determine the quantitative effects on the real frequency and

growth rate as a function of this deviation. We start by

assuming that we have adiabatic electrons for which the dis-

persion Eq. (65) is

2þ eið235 Wad;e þWad;iÞ ¼ �ðni � �x�;iÞ
	�
� n�1

i �
1

2
n�3

i

�

� e�bi=2I 0ðbiÞ þ eiZeðniÞCeðbiÞ


:

(66)

After rearranging the terms in the above equation we finally

get the following relation for ei:

ei ¼
�2n3

i þ ½n3
i þ 0:5ni � �x�;in

2
i � 0:5 �x�;i�e�bi=2I0ðbiÞ

Wad;totn3
i þ ð �x�;in3

i � n4
i ÞZeðniÞCeðbiÞ

;

(67)
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where Wad,tot¼ 2.35Wad,eþWad,i. This relation gives the

possible deviation of the equilibrium PDF from the Maxwel-

lian PDF for a given plasma turbulence, i.e., ni. One has to

remember that only positive values of Re[e] are physically

meaningful.

Using the same plasma parameters as was used in Eqs.

(54), (61), and (63) we compute the term Ze(ni), and from

Eq. (59) we get

ZeðniÞ ¼
VT;iffiffiffi

p
p Limr!0

1

ð�ni � irÞ

ð1
�1

duUðuÞ
	

þ 1

ð�ni � irÞ3
ð1
�1

u2duUðuÞ



¼ �6:5� 10�9 � 3:8� 10�9n2
i

n3
i

: (68)

Here, those integrations omitted resulted in zero contribu-

tions, and rewriting Eq. (66) by using these explicit values

results in the expression for the deviation in Eq. (67) we

obtain

ei ¼
�2n3

i þ ½n3
i þ 0:5ni � �x�;in

2
i � 0:5 �x�;i�e�bi=2I 0ðbiÞ

66:3n3
i � 39:2ni þ 39:2 �x�;i þ 23:0 �x�;in

2
i

:

(69)

Figure 1 shows ei from Eq. (69) where ni¼xþ ic. Here, the

values of x,c are normalized to jkjjjVT,i. We have assumed

parameter values bi¼ 0.1, kjj ¼ 10�3, and �x�;i ¼ �7:1� 102

with d ln n=dx¼ 1. It is found that there is a threshold in the

growth rate c close to c¼ 0.7 and that increasing to 1.0 only

increases the deviation from a Maxwellian from 0 to 0.03. It

should be noted that e increases the excess kurtosis of the

distribution function by a similar amount thus a quite small

deviation from a Maxwellian can have rather a significant

impact.

In Fig. 2, the mode growth rate as a function of ei is

shown. Note that in this figure the values of growth rate are

the solutions of the Eq. (69) for a given ei, while in the Fig. 1

we solve Eq. (69) for e at a given ni. As the dispersion equa-

tion is of 3rd order in �x three possible solutions exist; how-

ever, we are only interested in the solutions with non-zero

imaginary value, c> 0, corresponding to unstable situations.

It is shown in Fig. 2 that a deviation of ei¼ 0.01 yield an

increase of about 20% in the growth rate. Furthermore, the

growth rate increases almost linearly with increasing ei, and

such an increase in the growth rate will lead to a significant

increase in the level of anomalous flux.

In summary, we have derived a dispersion relation for

density gradient driven linear drift waves including the

effects coming from the inclusion of a fractional velocity de-

rivative in the Fokker-Planck equation in the case of constant

magnetic field and a shear-less slab geometry. The solutions

of this Fokker-Planck equation are the alpha-stable distribu-

tions. It has not yet been shown that in a direct way one can

derive the alpha-stable distribution function9,37 from the

classical form of collision operator.38 One way may be to

construct a new type of collisional operator by considering a

fractal phase space and reformulate the collision operator on

this new space. However, such a discussion is outside the

scope of the present paper. Interestingly enough, we note

that non-local effects are observed in non-linear collisionless

fluid simulations of plasma turbulence where the non-local

transport showing Levy features is induced by the interaction

of the non-linear terms in the dynamical equations.12 The

non-local features of non-linear fluid models are indicated by

recent analytical theories using path-integral methods to

derive probability density functions of fluxes.16

The fractional derivative is represented with the Fourier

transform containing a fractional exponent that we are able

to connect to the deviation from a Maxwellian distribution

described by e. The characteristics of the plasma drift wave

are fundamentally changed, i.e., the values of the growth-

rate c and real frequency x are significantly altered. A devia-

tion from the Maxwellian distribution function alters the dis-

persion relation for the density gradient drift waves such that

the growth rates are substantially increased and thereby may

cause enhanced levels of transport.
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FIG. 1. (Color) e as a function of x and c where ni¼xþ ic. We have

assumed bi¼ 0.1, kjj ¼ 10�3, and �x�;i ¼ �7:1� 102 with d ln n=dx¼ 1.

FIG. 2. c as a function of e. The same plasma parameters as in Fig. 1 are

used.
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