44 research outputs found

    Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy

    Get PDF
    We present a simple method to quantitatively image the dielectric permittivity of soft materials at nanoscale using electrostatic force microscopy (EFM) by means of the double pass method. The EFM experiments are based on the measurement of the frequency shifts of the oscillating tip biased at two different voltages. A numerical treatment based on the equivalent charge method allows extracting the values of the dielectric permittivity at each image point. This method can be applied with no restrictions of film thickness and tip radius. This method has been applied to image the morphology and the nanodielectric properties of a model polymer blend of polystyrene and poly(vinyl acetate)

    Nanoscale dielectric properties of insulating thin films: From single point measurements to quantitative images

    Get PDF
    Dielectric relaxation (DR) has shown to be a very useful technique to study dielectric materials like polymers and other glass formers, giving valuable information about the molecular dynamics of the system at different length and time scales. However, the standard DR techniques have a fundamental limitation: they have no spatial resolution. This is of course not a problem when homogeneous and non-structured systems are analyzed but it becomes an important limitation for studying the local properties of heterogeneous and/or nano-structured materials. To overcome this constrain we have developed a novel approach that allows quantitatively measuring the local dielectric permittivity of thin films at the nanoscale by means of Electrostatic Force Microscopy. The proposed experimental method is based on the detection of the local electric force gradient at different values of the tip-sample distance. The value of the dielectric permittivity is then calculated by fitting the experimental points using the Equivalent Charge Method. Even more interesting, we show how this approach can be extended in order to obtain quantitative dielectric images of insulating thin films with an excellent lateral resolution

    Measuring dielectric properties at the nanoscale using Electrostatic Force Microscopy

    Get PDF
    Several electrostatic force microscopy (EFM) - based methods have been recently developed to study the nanoscale dielectric properties of thin insulating layers. Some methods allow measuring quantitatively the static dielectric permittivity whereas some others provide qualitative information about the temperature-frequency dependence of dielectric properties. In this chapter, all these methods are described and illustrated by experiments on pure and nanostructured polymer films. A section is dedicated to EFM probe - sample models and especially to the Equivalent Charge Method (ECM)

    Dielectric properties of thin insulating layers measured by Electrostatic Force Microscopy

    Get PDF
    In order to measure the dielectric permittivity of thin insulting layers, we developed a method based on electrostatic force microscopy (EFM) experiments coupled with numerical simulations. This method allows to characterize the dielectric properties of materials without any restrictions of film thickness, tip radius and tip-sample distance. The EFM experiments consist in the detection of the electric force gradient by means of a double pass method. The numerical simulations, based on the equivalent charge method (ECM), model the electric force gradient between an EFM tip and a sample, and thus, determine from the EFM experiments the relative dielectric permittivity by an inverse approach. This method was validated on a thin SiO2 sample and was used to characterize the dielectric permittivity of ultrathin poly(vinyl acetate) and polystyrene films at two temperatures

    Theory of molecular excitation and relaxation near a plasmonic device

    Get PDF
    International audienceThe new optical concepts currently developed in the research field of plasmonics can have significant practical applications for integrated optical device miniaturization as well as for molecular sensing applications. Particularly, these new devices can offer interesting opportunities for optical addressing of quantum systems. In this article, we develop a realistic model able to explore the various functionalities of a plasmon device connected to a single fluorescing molecule. We show that this theoretical method provides a useful framework to understand how quantum and plasmonic entities interact in a small area. Thus, the fluorescence signal evolution from excitation control to relaxation control depending on the incident light power is clearly observed

    Huntingtin proteolysis releases non-polyQ fragments that cause toxicity through dynamin 1 dysregulation

    Get PDF
    Cleavage of mutant huntingtin (HTT) is an essential process in Huntington's disease (HD), an inherited neurodegenerative disorder. Cleavage generates N-ter fragments that contain the polyQ stretch and whose nuclear toxicity is well established. However, the functional defects induced by cleavage of full-length HTT remain elusive. Moreover, the contribution of non-polyQ C-terminal fragments is unknown. Using time- and site-specific control of full-length HTT proteolysis, we show that specific cleavages are required to disrupt intramolecular interactions within HTT and to cause toxicity in cells and flies. Surprisingly, in addition to the canonical pathogenic N-ter fragments, the C-ter fragments generated, that do not contain the polyQ stretch, induced toxicity via dilation of the endoplasmic reticulum (ER) and increased ER stress. C-ter HTT bound to dynamin 1 and subsequently impaired its activity at ER membranes. Our findings support a role for HTT on dynamin 1 function and ER homoeostasis. Proteolysis-induced alteration of this function may be relevant to disease. Synopsis The development of a time and site-specifically controlled cleavage of the mutant huntingtin protein reveals a pathogenic mechanism induced by the non-polyQ-containing fragments that are generated upon proteolysis during disease progression. Huntingtin proteolysis generates N-ter fragments that contain the toxic polyQ stretch but also the corresponding C-ter fragments. N-ter to C-ter intramolecular interactions present in full-length huntingtin are abrogated by sequential cleavages. Whereas the N-ter polyQ fragments translocate into the nucleus, the non-polyQ C-ter huntingtin fragments remain in the cytoplasm and cause ER dilation, stress and cell death. C-ter huntingtin fragments bind and inactivate dynamin 1 at the ER thus causing ER dilation and toxicity. Site-specifically controlled cleavage of the mutant huntingtin protein reveals a pathogenic mechanism induced by non-polyQ-containing fragments that are generated upon proteolysis during disease progression.</p

    Polarization state of the optical near-field

    Full text link
    The polarization state of the optical electromagnetic field lying several nanometers above complex dielectric structures reveals the intricate light-matter interaction that occurs in this near-field zone. This information can only be extracted from an analysis of the polarization state of the detected light in the near-field. These polarization states can be calculated by different numerical methods well-suited to near--field optics. In this paper, we apply two different techniques (Localized Green Function Method and Differential Theory of Gratings) to separate each polarisation component associated with both electric and magnetic optical near-fields produced by nanometer sized objects. The analysis is carried out in two stages: in the first stage, we use a simple dipolar model to achieve insight into the physical origin of the near-field polarization state. In the second stage, we calculate accurate numerical field maps, simulating experimental near-field light detection, to supplement the data produced by analytical models. We conclude this study by demonstrating the role played by the near-field polarization in the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.

    Multiple star systems in the Orion nebula

    Get PDF
    This is the author accepted manuscript. The final fersion is available from EDP Sciences via the DOI in this record.This work presents an interferometric study of the massive-binary fraction in the Orion Trapezium cluster with the recently comissioned GRAVITY instrument. We observed a total of 16 stars of mainly OB spectral type. We find three previously unknown companions for θ1 Ori B, θ2 Ori B, and θ2 Ori C. We determined a separation for the previously suspected companion of NU Ori. We confirm four companions for θ1 Ori A, θ1 Ori C, θ1 Ori D, and θ2 Ori A, all with substantially improved astrometry and photometric mass estimates. We refined the orbit of the eccentric high-mass binary θ1 Ori C and we are able to derive a new orbit for θ1 Ori D. We find a system mass of 21.7 M⊙ and a period of 53 days. Together with other previously detected companions seen in spectroscopy or direct imaging, eleven of the 16 high-mass stars are multiple systems. We obtain a total number of 22 companions with separations up to 600 AU. The companion fraction of the early B and O stars in our sample is about two, significantly higher than in earlier studies of mostly OB associations. The separation distribution hints toward a bimodality. Such a bimodality has been previously found in A stars, but rarely in OB binaries, which up to this point have been assumed to be mostly compact with a tail of wider companions. We also do not find a substantial population of equal-mass binaries. The observed distribution of mass ratios declines steeply with mass, and like the direct star counts, indicates that our companions follow a standard power law initial mass function. Again, this is in contrast to earlier findings of flat mass ratio distributions in OB associations. We excluded collision as a dominant formation mechanism but find no clear preference for core accretion or competitive accretion.Marie Skłodowska-Curie Grant AgreementFCT-PortugalERC Starting Gran
    corecore