63 research outputs found

    GaAsPN-based PIN solar cells MBE-grown on GaP substrates: toward the III-V/Si tandem solar cell

    No full text
    International audienceGaAsPN semiconductors are promising material for the elaboration of high efficiencies tandem solar cells on silicon substrates. GaAsPN diluted nitride alloy is studied as the top junction material due to its perfect lattice matching with the Si substrate and its ideal bandgap energy allowing a perfect current matching with the Si bottom cell. We review our recent progress in materials development of the GaAsPN alloy and our recent studies of some of the different building blocks toward the elaboration of a PIN solar cell. A lattice matched (with a GaP(001) substrate, as a first step toward the elaboration on a Si substrate) 1”m-thick GaAsPN alloy has been grown by MBE. After a post-growth annealing step, this alloy displays a strong absorption around 1.8-1.9 eV, and efficient photoluminescence at room temperature suitable for the elaboration of the targeted solar cell top junction. Early stage GaAsPN PIN solar cells prototypes have been grown on GaP (001) substrates, with 2 different absorber thicknesses (1”m and 0.3”m). The external quantum efficiencies and the I-V curves show that carriers have been extracted from the GaAsPN alloy absorbers, with an open-circuit voltage of 1.18 V, while displaying low short circuit currents meaning that the GaAsPN structural properties needs a further optimization. A better carrier extraction has been observed with the absorber displaying the smallest thickness, which is coherent with a low carriers diffusion length in our GaAsPN compound. Considering all the pathways for improvement, the efficiency obtained under AM1.5G is however promising

    Strain, size and composition of InAs Quantum Sticks, embedded in InP, by means of Grazing Incidence X-ray Anomalous Diffraction

    Full text link
    We have used x-ray anomalous diffraction to extract the x-ray structure factor of InAs quantum stick-like islands, embedded in InP. The average height of the quantum sticks (QSs), as deduced from the width of the structure factor profile is 2.54nm. The InAs out of plane deformation, relative to InP, is equal to 6.1%. Diffraction Anomalous Fine Structure provides a clear evidence of pure InAs QSs. Finite Difference Method calculations reproduce well the diffraction data, and give the strain along the growth direction. Chemical mixing at interfaces is at most of 1MLComment: 9 pages, 7 figures, submitte

    Compared efficacy of preservation solutions in liver transplantation: A long-term graft outcome study from the european liver transplant registry

    Get PDF
    International audienceBetween 2003 and 2012, 42 869 first liver transplantations performed in Europe with the use of either University of Wisconsin solution (UW; N = 24 562), histidine-tryptophan-ketoglutarate(HTK; N = 8696), Celsior solution (CE; N = 7756) or Institute Georges Lopez preservation solution (IGL-1; N = 1855) preserved grafts. Alternative solutions to the UW were increasingly used during the last decade. Overall, 3-year graft survival was higher with UW, IGL-1 and CE (75%, 75% and 73%, respectively), compared to the HTK (69%) (p 12 h or grafts used for patients with cancer (p < 0.0001). For partial grafts, 3-year graft survival was 89% for IGL-1, 67% for UW, 68% for CE and 64% for HTK (p = 0.009). Multivariate analysis identified HTK as an independent factor of graft loss, with recipient HIV (+), donor age ≄65 years, recipient HCV (+), main disease acute hepatic failure, use of a partial liver graft, recipient age ≄60 years, no identical ABO compatibility, recipient hepatitis B surface antigen (-), TIT ≄ 12 h, male recipient and main disease other than cirrhosis. HTK appears to be an independent risk factor of graft loss. Both UW and IGL-1, and CE to a lesser extent, provides similar results for full size grafts. For partial deceased donor liver grafts, IGL-1 tends to offer the best graft outcome

    Abrupt GaP/Si hetero-interface using bistepped Si buffer

    Get PDF
    We evidence the influence of the quality of the starting Si surface on the III-V/Si interface abruptness and on the formation of defects during the growth of III-V/Si heterogeneous crystal, using high resolution transmission electron microscopy and scanning transmission electron microscopy. GaP layers were grown by molecular beam epitaxy on vicinal Si (001). The strong effect of the Si substrate chemical preparation is first demonstrated by studying structural properties of both Si homoepitaxial layer and GaP/Si heterostructure. It is then shown that choosing adequate chemical preparation conditions and subsequent III-V regrowth conditions enables the quasi-suppression of micro-twins in the epilayer. Finally, the abruptness of GaP/Si interface is found to be very sensitive to the Si chemical preparation and is improved by the use of a bistepped Si buffer prior to III-V overgrowth

    Stability of the intermediate band energy position upon temperature changes in GaNP and GaNPAs

    No full text
    International audienceGaNxP1-x and GaNxP1-x-yAsy highly mismatched alloys (x ≀ 0.025 and y ≀ 0.4), promising candidates for intermediate band solar cell applications, were studied by optical absorption in a broad temperature range. Incorporation of N to a GaP matrix results in a splitting of the conduction band into two E- and E+ subbands forming an intermediate band gap. The analysis of temperature dependent absorption measurements of GaNP within the band anticrossing (BAC) model framework shows, with the assumption that the N-localized level position is independent of the temperature, the intermediate band position does not vary significantly with the temperature. At the same time the position of the valence band remains virtually unchanged by the incorporated N in GaNP. Subsequent addition of As atoms into GaNP allows for a shift of both valence and conduction bands, what is seen in the BAC analysis of GaNPAs absorption spectra, making it possible to tune the band alignment of GaNPAs-based solar cells. The analysis within the BAC model allows also to show the thermal shift of conduction and valence bands independently

    Structural and morphological evolution of Co on faceted Pt/W(111) surface upon thermal annealing

    No full text
    International audienceThe structural and morphological changes of a 1.1 monolayer (ML) Pt deposit on W(1 1 1) have been investigated in situ, in ultra-high vacuum, as a function of the annealing temperature from 700 to 1340 K, by a combination of grazing incidence X-ray diffraction and grazing incidence small-angle X-ray scattering. Before annealing, the thin Pt layer is two-dimensional and lattice-matched to the W(1 1 1) surface. The faceting of Pt/W(1 1 1) towards nanoscale three-sided pyramids with {2 1 1} facets has been detected from 715 K. At this stage, the pyramids, which have a 5-nm average lateral size, cover nearly perfectly the surface. At higher temperatures, they increase in size. The role of the edge energy in the nanofaceting process is discussed. In addition, 4 MLs Co are deposited at room temperature on the smallest Pt/W pyramids. The obtained three-dimensional Co islands are correlated with the Pt/W nanopyramids and Co is relaxed on Pt/W. At approximately 800 K, a CoPt alloy is formed and becomes better ordered as the annealing temperature increases. At 1100 K, both defaceting and phase separation begin; the CoPt alloy segregates on the W(1 1 1) flat surface, while Co forms an epitaxial layer on the {2 1 1} facets. In addition, in the temperature range of 1100–1200 K, a great majority of {2 1 1} large facets coexist with some {1 1 0} small facets. Finally, the surface becomes flat again at 1250 K

    Self-Organized Growth of Nanoparticles on a Surface Patterned by a Buried Dislocation Network

    No full text
    International audienceThe self-organized growth of Co nanoparticles is achieved at room temperature on an inhomogenously strained Ag(001) surface arising from an underlying square misfit dislocation network of 10 nm periodicity buried at the interface between a 5 nm-thick Ag film and a MgO(001) substrate. This is revealed by in situ grazing-incidence small-angle x-ray scattering. Simulations of the data performed in the distorted wave Born approximation framework demonstrate that the Co clusters grow above the dislocation crossing lines. This is confirmed by molecular dynamic simulations indicating preferential Co adsorption on tensile sites
    • 

    corecore