14 research outputs found

    Generation of high-order harmonics with tunable photon energy and spectral width using double pulses

    Get PDF
    This work theoretically investigates high-order harmonic generation in rare gas atoms driven by two temporally delayed ultrashort laser pulses. Apart from their temporal delay, the two pulses are identical. Using a single-atom model of the laser-matter interaction it is shown that the photon energy of the generated harmonics is controllable within the range of one eV -- a bandwidth comparable to the photon energy of the fundamental field -- by varying the time delay between the generating laser pulses. It is also demonstrated that high-order harmonics generated by double pulses have advantageous characteristics, which mimick certain properties of an extreme ultraviolet (XUV) monochromator. With the proposed method, a simpler setup at a much lower cost and comparatively higher spectral yield can be implemented in contrast to other approaches.Comment: 7 pages, 6 figures, after peer-review, corrected typo in author lis

    Liquid-cooled modular gas cell system for high-order harmonic generation using high average power laser systems

    Get PDF
    We present the design and implementation of a new, modular gas target suitable for high-order harmonic generation using high average power lasers. To ensure thermal stability in this high heat load environment, we implement an appropriate liquid cooling system. The system can be used in multiple-cell configurations, allowing us to control the cell length and aperture size. The cell design was optimized with heat and flow simulations for thermal characteristics, vacuum compatibility, and generation medium properties. Finally, the cell system was experimentally validated by conducting high-order harmonic generation measurements using the 100 kHz high average power HR-1 laser system at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI ALPS) facility. Such a robust, versatile, and stackable gas cell arrangement can easily be adapted to different experimental geometries in both table-top laboratory systems and user-oriented facilities, such as ELI ALPS

    Generation of high-order harmonics with tunable photon energy and spectral width using double pulses

    Get PDF
    This work theoretically investigates high-order harmonic generation in rare-gas atoms driven by two temporally delayed ultrashort laser pulses. Apart from their temporal delay, the two pulses are identical. Using a single-atom model of the laser-matter interaction it is shown that the photon energy of the generated harmonics is controllable within the range of one eV-a bandwidth comparable to the photon energy of the fundamental field-by varying the time delay between the generating laser pulses. It is also demonstrated that high-order harmonics generated by double pulses have advantageous characteristics, which mimick certain properties of an extreme ultraviolet monochromator. With the proposed method, a simpler setup at a much lower cost and comparatively higher spectral yield can be implemented in contrast to other approaches

    All-Optical Experimental Control of High-Harmonic Photon Energy

    Get PDF
    We generate high-order harmonics in gaseous medium with tunable photon energy using time domain interferometry of double pulses in a non-collinear generation geometry. The method is based on the fact that the generated harmonics inherit certain spectral properties of the driving laser. The two temporally delayed ultrashort laser pulses, identical in all parameters, are produced by a custom-made split-and-delay unit utilizing wave front splitting without a significant energy loss. The arrangement is easy to implement in any attosecond pulse generation beamline, and is suitable for the production of an extreme ultraviolet source with simply and quickly variable central photon energy, useful for a broad range of applications.Comment: 6 pages, 5 figures, after peer-revie

    Spectrally tunable ultrashort monochromatized extreme ultraviolet pulses at 100 kHz

    Full text link
    We present the experimental realization of spectrally tunable, ultrashort, quasimonochromatic extreme ultraviolet (XUV) pulses generated at 100 kHz repetition rate in a user-oriented gas high harmonic generation (GHHG) beamline of the Extreme Light Infrastructure - Attosecond Light Pulse Source (ELI ALPS) facility. Versatile spectral and temporal shaping of the XUV pulses are accomplished with a double-grating, time-delay compensated monochromator accommodating the two composing stages in a novel, asymmetrical geometry. This configuration supports the achievement of high monochromatic XUV flux (2.8e10+/-0.9e10 photons/s) combined with ultrashort pulse duration (4.0+/-0.2 fs using 12.1+/-0.6 fs driving pulses) and small spot size (sub-100 um). Focusability, spectral bandwidth, and overall photon flux of the produced radiation were investigated covering a wide range of instrumental configurations. Moreover, complete temporal (intensity and phase) characterization of the few-femtosecond monochromatic XUV pulses - a goal that is difficult to achieve by conventional reconstruction techniques - has been realized using ptychographic algorithm on experimentally recorded XUV-IR pump-probe traces. The presented results contribute to in-situ, time-resolved experiments accessing direct information on the electronic structure dynamics of novel target materials.Comment: 20 pages, 8 figure

    A detailed investigation of single-photon laser enabled Auger decay in neon

    Get PDF
    Single-photon laser enabled Auger decay (spLEAD) is an electronic de-excitation process which was recently predicted and observed in Ne. We have investigated it using bichromatic phase-locked free electron laser radiation and extensive angle-resolved photoelectron measurements, supported by a detailed theoretical model. We first used separately the fundamental wavelength resonant with the Ne+ 2s?2p transition, 46.17 nm, and its second harmonic, 23.08 nm, then their phase-locked bichromatic combination. In the latter case the phase difference between the two wavelengths was scanned, and interference effects were observed, confirming that the spLEAD process was occurring. The detailed theoretical model we developed qualitatively predicts all observations: branching ratios between the final Auger states, their amplitudes of oscillation as a function of phase, the phase lag between the oscillations of different final states, and partial cancellation of the oscillations under certain conditions

    Characterization of ultrashort double pulses and their application in attosecond physics

    Get PDF
    Temporal double pulses, produced in femtosecond laser laboratories, sometimes positively, sometimes negatively affect the outcome of an experiment. In my research I have improved an already existing femtosecond laser pulse characterization technique, called SRSI to be able to reconstruct femtosecond double-pulse structures. In addition, I have investigated the impact of the double pulses on the spectral characteristics of high-order harmonics, generated in gaseous material, by changing the delay between the constituting pulses of the double-pulse structure

    Double-pulse characterization by self-referenced spectral interferometry

    Get PDF
    The reconstruction of ultrashort optical pulses with a complex intensity substructure is demonstrated using the Self-Referenced Spectral Interferometry (SRSI) pulse characterization technique with a modified phase retrieval algorithm. A correction spectral phase term is extracted by the manipulation of the temporal interferogram, allowing the treatment of scenarios with complicated pulse shapes, where the original algorithm fails. The improved SRSI algorithm is verified through the application on two temporally well-separated pulses having the same polarization direction and spectral shape, generated by duplicating 37 fs-long amplified pulses of a Ti:Sa based laser system. The spectral phase of highly chirped double pulses with equal or different amplitude ratios is numerically retrieved. The collinear and achromatic experimental arrangement results in a compact and easy-to-align system. Published under license by AIP Publishing
    corecore