5 research outputs found
Prediction of the intestinal resistome by a three-dimensional structure-based method
The intestinal microbiota is considered to be a major reservoir of antibiotic resistance determinants (ARDs) that could potentially be transferred to bacterial pathogens via mobile genetic elements. Yet, this assumption is poorly supported by empirical evidence due to the distant homologies between known ARDs (mostly from culturable bacteria) and ARDs from the intestinal microbiota. Consequently, an accurate census of intestinal ARDs (that is, the intestinal resistome) has not yet been fully determined. For this purpose, we developed and validated an annotation method (called pairwise comparative modelling) on the basis of a three-dimensional structure (homology comparative modelling), leading to the prediction of 6,095 ARDs in a catalogue of 3.9 million proteins from the human intestinal microbiota. We found that the majority of predicted ARDs (pdARDs) were distantly related to known ARDs (mean amino acid identity 29.8%) and found little evidence supporting their transfer between species. According to the composition of their resistome, we were able to cluster subjects from the MetaHIT cohort (nâ=â663) into six resistotypes that were connected to the previously described enterotypes. Finally, we found that the relative abundance of pdARDs was positively associated with gene richness, but not when subjects were exposed to antibiotics. Altogether, our results indicate that the majority of intestinal microbiota ARDs can be considered intrinsic to the dominant commensal microbiota and that these genes are rarely shared with bacterial pathogens
Bovine TWINKLE and mitochondrial ribosomal protein L43 genes are regulated by an evolutionary conserved bidirectional promoter
TWINKLE is a mitochondrial DNA helicase playing an important role in mitochondrial DNA replication. In human, mutations in this gene cause progressive external ophtalmoplegia and mitochondrial DNA depletion syndrome-7. TWINKLE is well conserved among multicellular eukaryotes and is believed to be a key regulator of mitochondrial DNA copy number in mammals. Despite its involvement in several diseases and its important function in mitochondrial DNA metabolism, nothing is known about the regulation of the expression of TWINKLE. We have analysed the 5'-flanking genomic region of the bovine TWINKLE gene and found it was localised adjacent to the MRPL43 gene in a head-to-head orientation, suggesting that both genes are regulated by a shared bidirectional promoter. The bovine 75-bp long intergenic region shows substantial homology across different species and contains several conserved putative transcription factor binding sites. A TATA box, however, was lacking. Using a dual fluorescent reporter system and transient transfection assays, we have analysed the bovine intergenic region between TWINKLE and MRPL43. This small genomic fragment showed a bidirectional promoter activity. As the TWINKLE/MRPL43 bidirectional promoter tested was highly conserved, it is likely that the results we obtained here in cattle may be extended to the other species. (C) 2013 Elsevier B.V. All rights reserved
Genetic variability of the activity of bidirectional promoters : a pilot study in bovine muscle
Bidirectional promoters are regulatory regions co-regulating the expression of two neighbouring genes organized in a head-to-head orientation. In recent years, these regulatory regions have been studied in many organisms; however, no investigation to date has been done to analyse the genetic variation of the activity of this type of promoter regions. In our study, we conducted an investigation to first identify bidirectional promoters sharing genes expressed in bovine Longissimus thoracis and then to find genetic variants affecting the activity of some of these bidirectional promoters. Combining bovine gene information and expression data obtained using RNA-Seq, we identified 120 putative bidirectional promoters active in bovine muscle. We experimentally validated in vitro 16 of these bidirectional promoters. Finally, using gene expression and whole-genome genotyping data, we explored the variability of the activity in muscle of the identified bidirectional promoters and discovered genetic variants affecting their activity. We found that the expression level of 77 genes is correlated with the activity of 12 bidirectional promoters. We also identified 57 single nucleotide polymorphisms associated with the activity of 5 bidirectional promoters. To our knowledge, our study is the first analysis in any species of the genetic variability of the activity of bidirectional promoters
Prediction of the intestinal resistome by a three-dimensional structure-based method
The intestinal microbiota is considered to be a major reservoir of antibiotic resistance determinants (ARDs) that could potentially be transferred to bacterial pathogens via mobile genetic elements. Yet, this assumption is poorly supported by empirical evidence due to the distant homologies between known ARDs (mostly from culturable bacteria) and ARDs from the intestinal microbiota. Consequently, an accurate census of intestinal ARDs (that is, the intestinal resistome) has not yet been fully determined. For this purpose, we developed and validated an annotation method (called pairwise comparative modelling) on the basis of a three-dimensional structure (homology comparative modelling), leading to the prediction of 6,095 ARDs in a catalogue of 3.9 million proteins from the human intestinal microbiota. We found that the majority of predicted ARDs (pdARDs) were distantly related to known ARDs (mean amino acid identity 29.8%) and found little evidence supporting their transfer between species. According to the composition of their resistome, we were able to cluster subjects from the MetaHIT cohort (nâ=â663) into six resistotypes that were connected to the previously described enterotypes. Finally, we found that the relative abundance of pdARDs was positively associated with gene richness, but not when subjects were exposed to antibiotics. Altogether, our results indicate that the majority of intestinal microbiota ARDs can be considered intrinsic to the dominant commensal microbiota and that these genes are rarely shared with bacterial pathogens.The project was funded in part by the European Union Seventh Framework Programme (FP7-HEALTH-2011-single-stage) under grant agreement number 282004, EvoTAR. IRYCIS authors acknowledge the European Development Regional Fund âA way to achieve Europeâ for co-founding the Spanish R&D National Plan 2012â2019 Work (PI15-0512), CIBER (CIBERESP; CB06/02/0053) and the Government of Madrid (InGeMICS- B2017/BMD-3691). V.F.L. was further funded by a Research Award Grant 2016 of the European Society for Clinical Microbiology and Infectious Diseases