1,208 research outputs found
Geometrical effects on the optical properties of quantum dots doped with a single magnetic atom
The emission spectra of individual self-assembled quantum dots containing a
single magnetic Mn atom differ strongly from dot to dot. The differences are
explained by the influence of the system geometry, specifically the in-plane
asymmetry of the quantum dot and the position of the Mn atom. Depending on both
these parameters, one has different characteristic emission features which
either reveal or hide the spin state of the magnetic atom. The observed
behavior in both zero field and under magnetic field can be explained
quantitatively by the interplay between the exciton-manganese exchange
interaction (dependent on the Mn position) and the anisotropic part of the
electron-hole exchange interaction (related to the asymmetry of the quantum
dot).Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let
Mid-infrared laser light nulling experiment using single-mode conductive waveguides
Aims: In the context of space interferometry missions devoted to the search
of exo-Earths, this paper investigates the capabilities of new single mode
conductive waveguides at providing modal filtering in an infrared and
monochromatic nulling experiment; Methods: A Michelson laser interferometer
with a co-axial beam combination scheme at 10.6 microns is used. After
introducing a Pi phase shift using a translating mirror, dynamic and static
measurements of the nulling ratio are performed in the two cases where modal
filtering is implemented and suppressed. No additional active control of the
wavefront errors is involved. Results: We achieve on average a statistical
nulling ratio of 2.5e-4 with a 1-sigma upper limit of 6e-4, while a best null
of 5.6e-5 is obtained in static mode. At the moment, the impact of external
vibrations limits our ability to maintain the null to 10 to 20 seconds.;
Conclusions: A positive effect of SM conductive waveguide on modal filtering
has been observed in this study. Further improvement of the null should be
possible with proper mechanical isolation of the setup.Comment: Accepted in A&A, 7 pages, 5 figure
Effective interactions in the colloidal suspensions from HNC theory
The HNC Ornstein-Zernike integral equations are used to determine the
properties of simple models of colloidal solutions where the colloids and ions
are immersed in a solvent considered as a dielectric continuum and have a size
ratio equal to 80 and a charge ratio varying between 1 and 4000. At an infinite
dilution of colloids, the effective interactions between colloids and ions are
determined for ionic concentrations ranging from 0.001 to 0.1 mol/l and
compared to those derived from the Poisson-Boltzmann theory. At finite
concentrations, we discuss on the basis of the HNC results the possibility of
an unambiguous definition of the effective interactions between the colloidal
molecules.Comment: 26 pages, 15 figure
Soliton Instabilities and Vortex Streets Formation in a Polariton Quantum Fluid
Exciton-polaritons have been shown to be an optimal system in order to
investigate the properties of bosonic quantum fluids. We report here on the
observation of dark solitons in the wake of engineered circular obstacles and
their decay into streets of quantized vortices. Our experiments provide a
time-resolved access to the polariton phase and density, which allows for a
quantitative study of instabilities of freely evolving polaritons. The decay of
solitons is quantified and identified as an effect of disorder-induced
transverse perturbations in the dissipative polariton gas
Sliding friction between an elastomer network and a grafted polymer layer: the role of cooperative effects
We study the friction between a flat solid surface where polymer chains have
been end-grafted and a cross-linked elastomer at low sliding velocity. The
contribution of isolated grafted chains' penetration in the sliding elastomer
has been early identified as a weakly velocity dependent pull-out force. Recent
experiments have shown that the interactions between the grafted chains at high
grafting density modify the friction force by grafted chain. We develop here a
simple model that takes into account those interactions and gives a limit
grafting density beyond which the friction no longer increases with the
grafting density, in good agreement with the experimental dataComment: Submitted to Europhys. Letter
Interdigitation between surface-anchored polymer chains and an elastomer : consequences for adhesion promotion
We study the adhesion between a cross-linked elastomer and a flat solid
surface where polymer chains have been end-grafted. To understand the adhesive
feature of such a system, one has to study both the origin of the grafted layer
interdigitation with the network, and the end-grafted chains extraction out of
the elastomer when it comes unstuck from the solid surface. We shall tackle
here the first aspect for which we develop a partial interdigitation model that
lets us analytically predict a critical surface grafting density beyond which the layer no longer interdigitates
with the elastomer. We then relate this result with recent adhesion
measurements
3D stability analysis of gravity dams on sloped rock foundations using the limit equilibrium method
A convenient approach to performing stability analysis of concrete gravity dams is the so-called two dimensional
ââgravity method.ââ However, concrete gravity dams located in valleys with sloped rock foundation
abutments behave as three-dimensional (3D) structures and are often able to share compressive
and shear loads between adjacent monoliths, especially when shear keys are present. A general 3D limit
equilibrium method was developed in this study to compute global sliding safety factors (SSFg) by considering
sequential load redistribution among adjacent monoliths when individual monoliths have mobilized
their sliding strength. Two validation examples of the sliding safety assessment of existing dams are
presented to illustrate the accuracy and efficiency of the proposed approach compared to that of the full
3D numerical analyses conducted using the distinct element method. It is shown that gravity dams may
be formed by individual monoliths on sloped rock foundations that will slide if considered as isolated
structures but will constitute a stable assembly when the load-sharing capabilities of monoliths are recognized
in the analysis.The financial support provided by FCT (the Portuguese Foundation for Science and Technology), through the PhD Grant SFRH/BD/43585/2008, and by the Natural Science and Engineering Research Council of Canada is acknowledged
Slip-controlled thin film dynamics
In this study, we present a novel method to assess the slip length and the
viscosity of thin films of highly viscous Newtonian liquids. We quantitatively
analyse dewetting fronts of low molecular weight polystyrene melts on
Octadecyl- (OTS) and Dodecyltrichlorosilane (DTS) polymer brushes. Using a thin
film (lubrication) model derived in the limit of large slip lengths, we can
extract slip length and viscosity. We study polymer films with thicknesses
between 50 nm and 230 nm and various temperatures above the glass transition.
We find slip lengths from 100 nm up to 1 micron on OTS and between 300 nm and
10 microns on DTS covered silicon wafers. The slip length decreases with
temperature. The obtained values for the viscosity are consistent with
independent measurements.Comment: 4 figure
Fine structure of exciton excited levels in a quantum dot with a magnetic ion
The fine structure of excited excitonic states in a quantum dot with an
embedded magnetic ion is studied theoretically and experimentally. The
developed theory takes into account the Coulomb interaction between charged
carriers, the anisotropic long-range electron-hole exchange interaction in the
zero-dimensional exciton, and the exchange interaction of the electron and the
hole with the -electrons of a Mn ion inserted inside the dot. Depending on
the relation between the quantum dot anisotropy and the exciton-Mn coupling the
photoluminescence excitation spectrum has a qualitatively different behavior.
It provides a deep insight into the spin structure of the excited excitonic
states.Comment: 6 pages, 6 figure
- âŠ