1,648 research outputs found
The best constant for the centered maximal operator on radial decreasing functions
We show that the lowest constant appearing in the weak type (1,1) inequality
satisfied by the centered Hardy-Littlewood maximal operator on radial
integrable functions is 1.Comment: corrected typo
A refined analysis of the low-mass eclipsing binary system T-Cyg1-12664
The observational mass-radius relation of main sequence stars with masses
between ~0.3 and 1.0 Msun reveals deviations between the stellar radii
predicted by models and the observed radii of stars in detached binaries. We
generate an accurate physical model of the low-mass eclipsing binary
T-Cyg1-12664 in the Kepler mission field to measure the physical parameters of
its components and to compare them with the prediction of theoretical stellar
evolution models. We analyze the Kepler mission light curve of T-Cyg1-12664 to
accurately measure the times and phases of the primary and secondary eclipse.
In addition, we measure the rotational period of the primary component by
analyzing the out-of-eclipse oscillations that are due to spots. We accurately
constrain the effective temperature of the system using ground-based absolute
photometry in B, V, Rc, and Ic. We also obtain and analyze V, Rc, Ic
differential light curves to measure the eccentricity and the orbital
inclination of the system, and a precise Teff ratio. From the joint analysis of
new radial velocities and those in the literature we measure the individual
masses of the stars. Finally, we use the PHOEBE code to generate a physical
model of the system. T-Cyg1-12664 is a low eccentricity system, located
d=360+/-22 pc away from us, with an orbital period of P=4.1287955(4) days, and
an orbital inclination i=86.969+/-0.056 degrees. It is composed of two very
different stars with an active G6 primary with Teff1=5560+/-160 K,
M1=0.680+/-0.045 Msun, R1=0.799+/-0.017 Rsun, and a M3V secondary star with
Teff2=3460+/-210 K, M2=0.376+/-0.017 Msun, and R2=0.3475+/-0.0081 Rsun. The
primary star is an oversized and spotted active star, hotter than the stars in
its mass range. The secondary is a cool star near the mass boundary for fully
convective stars (M~0.35 Msun), whose parameters appear to be in agreement with
low-mass stellar model.Comment: 18 pages, 15 figures, 15 table
Pseudospectral Model Predictive Control under Partially Learned Dynamics
Trajectory optimization of a controlled dynamical system is an essential part
of autonomy, however many trajectory optimization techniques are limited by the
fidelity of the underlying parametric model. In the field of robotics, a lack
of model knowledge can be overcome with machine learning techniques, utilizing
measurements to build a dynamical model from the data. This paper aims to take
the middle ground between these two approaches by introducing a semi-parametric
representation of the underlying system dynamics. Our goal is to leverage the
considerable information contained in a traditional physics based model and
combine it with a data-driven, non-parametric regression technique known as a
Gaussian Process. Integrating this semi-parametric model with model predictive
pseudospectral control, we demonstrate this technique on both a cart pole and
quadrotor simulation with unmodeled damping and parametric error. In order to
manage parametric uncertainty, we introduce an algorithm that utilizes Sparse
Spectrum Gaussian Processes (SSGP) for online learning after each rollout. We
implement this online learning technique on a cart pole and quadrator, then
demonstrate the use of online learning and obstacle avoidance for the dubin
vehicle dynamics.Comment: Accepted but withdrawn from AIAA Scitech 201
Fístula uretro-rectal en el perro : a propósito de un caso clínico
En este arículo se describe un caso clínico de fístula uretro-rectal en un perro y su resolución mediante una fistulectomía a través de un abordaje por la región perineal, evitando así otros abordajes más traumáticos, obteniendo en nuestro caso un resultado muy satisfactorio.
A scheduling theory framework for GPU tasks efficient execution
Concurrent execution of tasks in GPUs can reduce the computation time of a workload by
overlapping data transfer and execution commands.
However it is difficult to implement an efficient run-
time scheduler that minimizes the workload makespan
as many execution orderings should be evaluated. In
this paper, we employ scheduling theory to build a
model that takes into account the device capabili-
ties, workload characteristics, constraints and objec-
tive functions. In our model, GPU tasks schedul-
ing is reformulated as a flow shop scheduling prob-
lem, which allow us to apply and compare well known
methods already developed in the operations research
field. In addition we develop a new heuristic, specif-
ically focused on executing GPU commands, that
achieves better scheduling results than previous tech-
niques. Finally, a comprehensive evaluation, showing
the suitability and robustness of this new approach,
is conducted in three different NVIDIA architectures
(Kepler, Maxwell and Pascal).Proyecto TIN2016- 0920R, Universidad de Málaga (Campus de Excelencia Internacional Andalucía Tech) y programa de donación de NVIDIA Corporation
- …