
A Scheduling Theory Framework for GPU
Tasks Efficient Execution

A.J. Lázaro-Muñoz, J.M. González-Linares, B. López-Albelda y N. Guil1

Abstract— Concurrent execution of tasks in GPUs
can reduce the computation time of a workload by
overlapping data transfer and execution commands.
However it is difficult to implement an efficient run-
time scheduler that minimizes the workload makespan
as many execution orderings should be evaluated. In
this paper, we employ scheduling theory to build a
model that takes into account the device capabili-
ties, workload characteristics, constraints and objec-
tive functions. In our model, GPU tasks schedul-
ing is reformulated as a flow shop scheduling prob-
lem, which allow us to apply and compare well known
methods already developed in the operations research
field. In addition we develop a new heuristic, specif-
ically focused on executing GPU commands, that
achieves better scheduling results than previous tech-
niques. Finally, a comprehensive evaluation, showing
the suitability and robustness of this new approach,
is conducted in three different NVIDIA architectures
(Kepler, Maxwell and Pascal).

Keywords— Scheduling Theory, Flow Shop, CUDA
Streams.

I. Introduction

In a typical application executed in current het-
erogeneous parallel architectures, some parts are ex-
ecuted in the CPU or host, while others parts are
delegated (offloaded) to the GPU. Besides, GPUs are
broadly used in multitask environments, e.g. data
centers, where applications running on CPUs offload
specific functions to GPUs in order to take advantage
of the device performance. This way, it is probable to
have several independent tasks ready to run concur-
rently in a GPU. In this context, several works have
been published that try to improve the way tasks
are scheduled on GPUs [1], [2], [3]. The most recent
ones propose hardware [4], [5], [6], [7] or software
[8], [9], [10] solutions that support preemption and
offer responsiveness, fairness or quality of service ca-
pabilities. The proposed solutions are focused on
kernel execution and they do not take into account
the transfer of data required to compute those ker-
nels. In many cases, the time taken by these transfers
is not negligible and can affect the performance of
the applied scheduling policy. In addition, software
approaches typically require to modify the original
kernels.

The impact of transfers on the total execution
time is given by the fact that the computation on
the device must wait for the transfer of input data
from CPU memory to GPU memory to be finished.
This delay entails an overhead that can be alle-
viated by overlapping data transfers with compu-
tation. Some Application Programming Interfaces

1University of Málaga, Andalućıa Tech, Dept. of Com-
puter Architecture, Spain, e-mail: {alazaro, jgl, blopeza,
nguil}@uma.es.

(API) such as CUDA [11] and OpenCL [12] pro-
vide features that allow to overlap communication
and computation, e.g., CUDA streams or OpenCL
commands queues. These features rely on the use
of asynchronous communications and hardware man-
aged command queues, and a large performance gain
can be obtained when properly configured.

The importance of properly configuring the con-
current execution of several tasks can be seen in
the next example, where one single host process
launches tasks onto an Nvidia K20c GPU. Figure 1
shows two time-lines corresponding to the execution
of four independent tasks in a different order. The
tasks have been selected from CUDA SDK [13] and
they are scheduled employing a different stream per
task. More precisely, the tasks are Matrix Multipli-
cation (Stream 0), Black Scholes (Stream 1), Sepa-
rable Convolution (Stream 2) and Vector Addition
(Stream 3). Time-lines include the time spent in
data transfer commands from host to device (HtD)
and from device to host (DtH), and the kernel com-
putation commands in the GPU (Kernel) for every
stream. As it can be seen from Figure 1, there is
no overlapping between kernels execution from dif-
ferent tasks as these tasks are able to exhaust at
least one of the available GPU resources (registers,
shared memory, etc.). Nevertheless, the total execu-
tion time for the bottom execution order is shortened
by 28% thanks to a higher overlap between the trans-
fer times of some tasks and the kernel execution times
of other tasks. The current Nvidia hardware sched-
uler solely utilizes the kernel resource requirements
to select the order that kernels blocks are launched
in the GPU, thus either of these orderings is possi-
ble. These results show the importance of choosing
the best execution order for a set of GPU tasks so
that overlapping between data transfers and kernel
computation is optimized.

On the other hand, scheduling theory is a field
of applied mathematics that deals with the prob-
lem of optimal ordering of a set of jobs. It is used
in many areas like management, production, trans-
portation or computer systems. In scheduling the-
ory, a flow shop is an ordered set of processors
P =< P1, P2, . . . , Pm > such that the first operation
of each job is performed on processor P1, the second
on processor P2, and so on, until the job completes
execution on Pm [14]. Many works have been pub-
lished on the problem of scheduling a collection of
jobs on a flow shop, to optimize measures like the
maximum finishing time or the utilization of the ma-
chines [15].

In this paper we expose how to apply methods in-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/214846190?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Two profiling views for the concurrent execution of four tasks belonging to CUDA SDK on a Nvidia K20c card.
Matrix Multiplication (MM-Kernel), Black Scholes (BS-Kernel), Separable Convolution (SC-Kernel) and Vector Addition
(VA-Kernel) computation task are launched by streams 0, 1, 2, and 3 respectively. The host to device transfers, kernels
computation and device to host transfers are represented by blue, green and yellow boxes respectively. Top and bottom
views correspond to two different orderings in streams execution.

troduced in scheduling theory to solve GPU tasks
execution scheduling. More precisely, we show that
the concurrent execution of GPU tasks using CUDA
streams can be modelled as a flow shop problem.
As an example we also present a run-time sched-
uler implementation that significantly reduces the
makespan of a workload and, consequently, increase
the use of the GPU. It takes into account data trans-
fers and GPU capability to overlap transfers and
computation. Moreover, in contrast with other soft-
ware scheduling approaches, original kernels of the
tasks do not need to be modified.

The rest of the paper is organized as follows. First,
scheduling theory is reviewed in Section II, with a
focus on GPU tasks scheduling using the flow shop
problem. Next, in Section III, several heuristics ob-
tained from the operations research field are dis-
cussed, and a new algorithm that merges the pre-
vious theory with a GPU tasks execution model is
presented. Then, several experiments that show the
suitability and robustness of this new approach are
conducted in Section IV. Finally, conclusions are
drawn in Section VI.

II. Scheduling theory applied to GPU
tasks execution

The problem of launching N tasks in a GPU can
be studied using scheduling theory. Scheduling is a
decision-making process where n jobs are allocated
to m machines. Following the notation introduced
by Graham et al. [16], the problem can be identi-
fied by three fields, α (that describes the machine
environment), β (the processing characteristics and
constraints), and γ (the objective function). Below
it is shown the most relevant values that can be used
for these fields in a GPU tasks launching context.

Launching a task (job in scheduling terminology)

Fig. 2. GPU tasks launching as a 3-machine flow shop prob-
lem. HtD commands are executed by machine 0, K com-
mands by machine 1 and DtH commands by machine 2.
Commands from kth job precede commands from (k+1)th
job in all machines (permutation flow shop). pi(j) corre-
sponds to the processing time of job j in machine i.

in a NVIDIA GPU typically involves executing three
commands: a Host to Device transfer (HtD), a kernel
command (K), and a Device to Host transfer (DtH).
Transfer commands are executed in DMA engines
and kernel commands in the GPU itself (through the
Grid Management Unit). Although current NVIDIA
architectures allow Concurrent Kernel Execution if
kernels do not exhaust any of the hardware resources
(memory, registers, etc), most kernels in real appli-
cations are designed to fully utilize these resources,
thus we restrict our analysis to kernels that do not
execute concurrently. On the other side, modern
GPUs have two DMA engines that allow simultane-
ous transfer commands in opposite directions, thus
we can consider 3 machines in our environment (two
DMA engines plus the GPU). This corresponds to
a flow shop problem, that is, a problem where each
job must be processed on each machine following a
given order. Then, field α is represented by F3 to
describe a 3-machine flow shop problem. Figure 2
shows an example with two jobs in a 3-machine flow
shop problem.

A generalization of this problem is the flexible flow

shop (also known as hybrid flow shop), where instead
of m machines in series there are c stages in series.
Each stage includes a number of identical machines
in parallel and can be used to describe a cluster of
GPUs. Thus, there would be 3 stages (one stage
for each command type), with as many machines as
GPUs in the cluster, and the problem would be rep-
resented as FF3.

Regarding the processing characteristics and con-
straints, several values can be taken into account.
For example, a common type of flow shop problems
considers that every machine operates under the as-
sumption of First Come First Served policy. This
policy does not hold under devices with HyperQ un-
less events are used to enforce an ordering. On the
other hand, it is known that for F3 systems there
always exist optimal schedules that do not require
sequence changes between machines [17] and, in that
case, some simplifications can be made that make
easier to find an optimal schedule. Thus, in this
work events are used to enforce the same ordering
in all the machines. This type of flow shop problem
is called permutation flow shop and it is noted using
the word prmu in the β field. In the example shown
in Figure 2 it can be seen than commands from kth
job precede commands from (k + 1)th job in all ma-
chines.

In a real world scenario, one or more processes (or
threads) execute part of their computation in the
CPU and other part in the GPU. Thus, scheduled
tasks can arrive to the system at some particular
time called release date (rj). These tasks cannot
be launched before its release date and this is noted
adding this value, rj , to the β field. Moreover, each
process could execute many different tasks in the
GPU, with some precedence constraints among them
to ensure correct execution. This constraints are typ-
ically encoded using a directed acyclic graph and can
be expressed using the word prec in the β field. Fi-
nally, tasks could belong to different users thus they
must be launched in different GPU contexts. In
scheduling theory this is equivalent to job families,
that is, jobs in the same family can be processed one
after another without any delay, but switching from
one family to another requires a setup time, s, before
jobs are launched. This setup time is the time that
takes to create a GPU context, and in the scheduling
theory notation is expressed adding the word fmls
to the β field.

It is also possible to include information about the
job characteristics in this β field, like its processing
time or its priority. For example, we will refer to pij
as the processing time of job j in machine i (as in
Figure 2, where p0(k) is the processing time of kth job
in machine 0 and so on). Although it is possible to
obtain an estimation of the processing time of each
command in advance, the real transfer times depend
on whether there is another transfer in the opposite
direction or not [18]. Therefore, these sources of un-
certainties may lead to sub-optimal schedules when
solving the objective function. A priority factor can

also be assigned to each job using a weight value,
wj , that can be taken into account in the objective
function. Furthermore, due dates dj that reflect the
completion date of job j can be also included in the
β field.

Finally, the objective function that defines the op-
timal schedule must be considered. The completion
time of job j can be denoted by Cj . The most com-
mon function in flow shop problems is to minimize
the makespan Cmax, defined as max(C1, ..., Cn), and
it is equivalent to minimize the completion time of
the last job to leave the system. In this type of prob-
lems it is almost equivalent to maximize the usage of
the machines that is our main objective. Another
useful objective function is the total weighted com-
pletion time (

∑
wjCj), also referred as the weighted

flow time, that takes into account the priority factors
given by the weight values.

Table I resumes these values with their meaning
and a short description. All these parameters can
be combined to express different real world situa-
tions and to select an appropriate solution from the
existing literature [19], [20]. The only requisite is
to obtain the right notation that captures the prob-
lem. For example, a simple scenario with a single
GPU and several independent tasks, ready to be ex-
ecuted using the same context, can be modelled as a
F3|prmu|Cmax problem. On the other side, a more
complex scenario like a multi-GPU system where sev-
eral users launch independent tasks at different re-
lease dates can be studied as a FF3|rj , fmls|Cmax.
As a practical example, in next section we will study
the F3|prmu|Cmax problem that arises when sev-
eral threads launch independent kernels that can be
computed using the same GPU context.

III. Flow shop scheduling

The problem presented in this section is typical in
many situations where one or more threads launch
several tasks that can be computed using the same
GPU context. For example, in a video surveillance
application, there could be several threads analyzing
different video streams and part of the computation
could be offloaded to a GPU to accelerate the whole
process. In a similar way to CUDA MultiProcess-
Service (MPS, [21]), a proxy thread could be used
to collect all tasks, and launch them using the same
GPU context to improve concurrency among tasks.
Figure 3 shows this situation. Two threads, A and
B, must execute independent CUDA tasks. A proxy
thread takes these tasks and schedule them using
the same GPU context. Each task is assigned to a
different stream, thus some of the commands of one
task can be overlapped with the commands of the
other task. As it was shown in the introduction, the
total execution time can be reduced by choosing the
best execution order.

Each task consists of several commands (i.e., HtD,
K and DtH commands) that are executed by the
DMA engines and the GPU. The total execution time
(the makespan Cmax) can be reduced by selecting the

TABLE I

Scheduling Theory Notation

Field Value Meaning Description

α
Fm
FFc

Flow Shop with m machines
Flexible (or Hybrid) Flow Shop with c stages

Each job is processed following a given order
As Fm but using c stages of identical machines

β

prmu
rj
wj

dj
prec
fmls

Permutation
Release dates
Priority factors
Due dates
Precedence constraints
Job families

Machines operate under FIFO policy
Tasks arrive at some particular release dates
Tasks are assigned a weight or priority factor
Tasks are assigned due dates
Tasks must follow a directed acyclic graph
Tasks belong to different users

γ
Cmax∑
wjCj

Makespan
Total Weighted Completion Time

Minimize completion time of last task
Priority factors are included

Fig. 3. A host proxy thread collect GPU tasks from two
threads and launch them using the same GPU context.

right schedule. Thus, this problem can be modelled
as a F3|prmu|Cmax, where these commands (jobs)
are scheduled in the three machines to minimize the
makespan.

In a more general case, the application run by
each thread may need to execute several tasks in
order. Typically, these tasks are launched asyn-
chronously, and precedence relationships are en-
forced using events or by launching them in the
same stream. Consequently, at any given time,
some of these tasks could be available to the host
proxy but only the first one, for each thread, ready
to be executed. Therefore, the problem can still
be modelled as F3|prmu|Cmax by considering only
the first ready task of each thread. Neverthe-
less, if the task precedence graph of each thread is
known in advance, the problem may be modelled
as F3|prmu, prec|Cmax and a more precise solution
could be found.

It can be proved that F3||Cmax is strongly NP-
hard. In fact, for a N tasks flow shop problem, there
are N ! different permutations, thus many heuristics
have been presented to solve efficiently this prob-
lem [15]. These heuristics can be classified as con-
structive or improvement depending on if they com-
pute the schedule from scratch or by improving a
previous solution. In this paper we are interested
on real time scheduling, thus we will consider only
lightweight algorithms. Nevertheless, for comparison
purposes, we have also included a time consuming
algorithm to obtain a near optimum schedule. Next
subsections present these heuristics.

A. Modified Johnson’s rule

The F2||Cmax problem was one of the first prob-
lems to be analyzed [22]. With Johnson’s rule an op-
timal schedule that minimizes the makespan can be
easily computed. First, two sets are built: Set I con-
tains all jobs with p1j < p2j , and Set II the remaining
jobs. Jobs in Set I go first, in increasing order of p1j ,
and the jobs in Set II go in decreasing order of p2j .
This schedule is optimal for F2|prmu|Cmax and can
be extended to F3 problems by considering Set I in-
cludes jobs with p1j + p2j < p2j + p3j , and Set II
the remaining jobs. Therefore, tasks with short HtD
and K commands are scheduled first. The solution
found using this heuristic is not optimal, but it can
be computed very fast. Henceforth we will refer to
this heuristic as MJR (Modified Johnson’s Rule).

B. Slope index

Other heuristics that take into account an arbi-
trary number of machines, like for example the Slope
heuristic [23], have been proposed in the literature
to find quasi-optimal schedules. This heuristic gives
priority to the tasks having the strongest tendency
to progress from short times to long times in the
sequence of processes. In our GPU problem this
means that tasks with short HtD times and long
DtH times are prioritized over tasks with long HtD
times and short DtH times. This priority is estab-
lished by computing a slope index Aj for job j as
Aj = −

∑m
i=1(m− (2i− 1))pij , where m is the num-

ber of machines, and the jobs are sequenced in de-
creasing order of the slope index. We will refer to
this heuristic as SI (Slope Index).

C. Mixed integer programming

Another form of solving this problem is using
Mixed Integer Programming (MIP) [24]. To do so
a number of variables must be defined (see Figure 4
for a graphical representation):

• Decision variable xjk, equal to 1 if job j is the
kth job in the sequence and 0 otherwise.

• Auxiliary variable Iik, the idle time on machine
i between the processing of the kth and (k+1)th
jobs in the sequence.

• Auxiliary variable Wik, the waiting time of the
kth job in the sequence between machines i and

Fig. 4. Graphical representation of variables used in the defi-
nition of the MIP problem. Blue boxes correspond to the
duration of kth job in machines i and i + 1, green boxes
correspond to (k+1)th job and orange box corresponds to
(k − 1)th job. Note in this particular example Ii+1,k = 0
because (k + 1)th job in machine i + 1 starts right after
kth job.

i+ 1.
• The difference between the time the job in

the (k + 1)th position starts on machine i + 1
and the time the job in the kth position com-
pletes its processing on machine i is denoted
by ∆ik = Iik +

∑n
j=1 xj,k+1pij + Wi,k+1 =

Wik +
∑n

j=1 xjkpi+1,j + Ii+1,k

Minimizing the makespan is equivalent to minimiz-
ing the total idle time on the last machine, that is,∑m−1

i=1 pi(1) +
∑n−1

j=1 Imj , where pi(1) is the process-
ing time on machine i of the job in the first position
of the sequence. The first term in the equation is
the time the first job reaches the last machine (i.e, it
completes its DtH command), and the second term
is the sum of idle times between the jobs in the last
machine.

Using the identity pi(k) =
∑n

j=1 xjkpij , the MIP
problem can be formulated as

minimise
∑m−1

i=1

∑n
j=1 xj1pij +

∑n−1
j=1 Imj

subject to
∑n

j=1 xjk = 1 k = 1, . . . , n∑n
k=1 xjk = 1 j = 1, . . . , n,

Iik +
∑n

j=1 xj,k+1pij . . . k = 1, . . . , n− 1

+Wi,k+1 −Wik . . . i = 1, . . . ,m− 1,
−

∑n
j=1 xjkpi+1,j . . .

− Ii+1,k = 0

Wi1 = 0 i = 1, . . . ,m− 1,

I1k = 0 k = 1, . . . , n− 1.

(1)
Both idle and waiting times are non-negative con-

tinuous variables, while the decision variable is inte-
ger (in fact it is binary). This minimization problem
is NP-hard and some heuristic must be used to search
the solution space. This can be very time consuming,
making it impractical in a real time application.

D. Single Queue

Previous approaches assume all processing times
are fixed but in fact they depend on the commands
that are currently being processed. More precisely, if
both a HtD and a DtH command are executing at the

0%

2%

4%

6%

8%

10%

12%

14%

0% 25% 50% 75% 100%

Re
la

tiv
e

Er
ro

r

% Overlap

Complete Model

Non overlap Model

Full Overlap Model

Fig. 5. Prediction time relative error for bidirectional trans-
fers with varying degrees of overlapping in a Titan X
GPU card. Three prediction models are considered: non-
overlapped transfers, full overlapped transfers, and a com-
plete model that adapts to the overlapping degree.

same time, their processing times will change [18].
This is due to the fact that, although the PCIe bus
is bidirectional and modern GPUs have two DMA
engines, the memory system is shared between both
copy operations and the bandwidth of the HtD and
DtH commands is reduced. Therefore, these previ-
ous heuristics will likely fail to obtain an optimum
schedule. Figure 5 shows the prediction time rela-
tive errors incurred when two bidirectional transfers,
with varying degrees of overlapping, take place in a
Titan X NVIDIA card. Three prediction models are
considered; a non overlap model that do not take
into account the effect of another transfer in the op-
posite direction, a full overlap model that is not able
to compute the overlapping intervals (and thus it al-
ways considers there is a full overlap between both
transfers), and a complete model that adapt the pre-
diction to the overlapping intervals. The first two
models fail to predict well some cases, with errors
above 10%, while the relative error of the complete
model is always below 1%.

In [18], a GPU tasks execution model and a heuris-
tic based on that model were presented. That model
uses an estimation of the HtD, K and DtH commands
of each task to simulate the execution of a permuta-
tion of the tasks. HtD and DtH times are updated
online to reflect the effect of overlapping transfers,
achieving an average simulation error below 1.5%.
Nevertheless, to obtain a correct estimation, Hyper-
Q must be restrained. Hyper-Q is a feature present in
NVIDIA GPUs since Kepler architecture. It provides
hardware managed queues that can schedule several
commands, but it can also reorder the execution of
these commands. Any change in the original order
performed by Hyper-Q could introduce a significant
error in the simulation, thus Hyper-Q is disabled by
forcing a single hardware managed queue.

The heuristic presented in that work uses the exe-
cution model to perform an online simulation of the
execution to choose the tasks that better overlap in
each instant. The reasoning behind the heuristic im-
plemented on that work is similar to Johnson’s Rule
and the Slope Index, but using the tasks execution
model to select, in an iterative manner, the task that
better adapt to the current tasks commands. We will
refer to this heuristic as SQ (Single Queue).

E. NEH heuristic with a GPU tasks execution model

A new algorithm, based on an existing heuristic
(NEH, [25]) and the execution model of [18], is pro-
posed in this work. NEH is regarded as one of the
best scheduling heuristics for the flow shop problem.
It is a constructive heuristic that iterates to compute
a solution:

1. For each task compute its total processing time
and sort them in non-increasing order.

2. Pick the first two tasks and find the best se-
quence by computing the makespan, using the
execution model, for the two possible sequences.

3. For each of the following tasks, i = 3, . . . , n,
find the best schedule by placing it in all the pos-
sible i positions in the sequence of tasks that are
already scheduled and computing the makespan
using the execution model.

Most heuristics try to schedule first the best, i.e.
shortest, tasks, but this heuristic starts probing the
worst (longest) tasks and accommodates the remain-
ing tasks to minimize the makespan.

The only drawback is the makespan must be com-
puted [n(n + 1)/2] − 1 times, of which n are com-
plete sequences and the rest are partial schedules,
but it can consistently obtain better results than
other heuristics [26]. We will refer to this heuris-
tic as NEH-GPU (NEH heuristic with GPU tasks
execution model).

IV. Experiments

In this section the five heuristics presented in pre-
vious section will be evaluated in a demanding mul-
tithreaded scenario (e.g. heterogeneous computing
server) where several threads running applications
(workers) offload one or several tasks onto a device.
All workers send task information regarding CUDA
API calls to a buffer that is constantly polled by a
host proxy thread. This thread is in charge of re-
ordering the set of tasks found in the buffer using
one of the five heuristics, and submitting the corre-
sponding commands to the device. We consider three
scenarios with 4, 8 and 16 workers to reflect different
workloads.

TABLE II

Tasks used in the experiments. They are classified as

Dominant Kernel (DK) or Dominant Transfer (DT)

depending on the duration of the HtD, K and DtH

commands. CONV task can be DK (CONV1) or DT

(CONV2) depending on the input parameters.

Kernel Source Description Dominance

MM CUDA SDK Matrix Multiplication DK
BS CUDA SDK Black Scholes DK
PF Rodinia Path Finder DK

PAF Rodinia Particle Filter DK
CONV CUDA SDK Separable Convolution DK/DT

VA CUDA SDK Vector Addition DT
TM CUDA SDK Matrix Transposition DT

FWT CUDA SDK Fast Walsh Transform DT

All the experiments have been conducted using a
set of real kernels obtained from the CUDA and Ro-

dinia SDK like in [18]. Tasks with different transfer
and kernel processing times have been selected (see
Table II). These tasks can be classified as dominant
transfer (DT) or dominant kernel (DK) depending on
whether the transfer time dominates over the ker-
nel time, or the other way round. These tasks are
grouped in benchmarks with a different composition
of dominant transfer or dominant kernel tasks (see
Table III). Thus, benchmark BK0 has no dominant
kernel tasks, BK25 has a 25% of dominant kernel
tasks, and so on.

To run the experiments, the host proxy thread cre-
ates a single CUDA context and associates each task
to a different stream that can be launched using the
ordering proposed by each heuristic. In Kepler and
later architectures the Hyper-Q feature must be re-
strained by using some synchronization method to
guarantee that the order calculated by the proxy will
not be modified during task execution. This is at-
tained by synchronizing commands within a stream
on some specific event (that can be recorded on a dif-
ferent stream) by using cudaStreamWaitEvent, and
reducing the number of hardware managed queues
to only one (by setting the environment variable
CUDA DEVICE MAX CONNECTIONS to 1).

All experiments have been executed on three GPU
architectures, a K20c (Kepler), a GTX980 (Maxwell)
and a Titan X (Pascal). Every heuristic has been
tried for each benchmark, in every architecture, fif-
teen times to record a mean makespan (total ex-
ecution time). For comparison purposes, the best
makespan obtained for each benchmark in each ar-
chitecture has been recorded to establish a minimum
reference value. Then, for every experiment, the
makespan obtained by each heuristic is compared
with this reference value to assess the proximity to
this minimum value. This proximity is computed by
dividing both values to obtain a percentage, thus a
result close to 100% means the heuristic obtained a
good solution.

The first experiment consists of four threads, each
launching one task. The five benchmarks (BK0,
BK25, and so on) have been tested in the three GPU
architectures, and the proximity to the best value
is shown in Table IV. The two simplest heuristics,
MJR and SI, do not obtain very good results, espe-
cially when there is a balanced mix of DK and DT
tasks, but they have a negligible overhead (less than
1µs). The third heuristic, MIP, uses integer pro-
gramming and obtains much better results but its
cost makes it impractical in a real time scheduler. In
fact, it needs thousands of iterations to converge for
the most demanding workloads thus, unlike the other
heuristics, it is executed offline to record the execu-
tion order and, later, this order is used by the proxy
to measure the makespan. It obtains good results for
the K20c but not as good in the GTX980 and Titan
X because, although it explores many permutations
until it reaches a solution, it does not consider the
effect of overlapping transfers. The fourth heuris-
tic, SQ, was developed specifically for GPU tasks

TABLE III

Tasks composition for each benchmark in experiments employing 4, 8 and 16 tasks.

Tasks 4 8 16

BK0 VA: 1, TM: 1, FWT: 2 VA: 2, TM: 2, FWT: 2, CONV2: 2 FWT: 1, TM: 9, VA: 5, CONV2: 1

BK25
MM: 1, VA: 1,
TM: 1, FWT:1

MM: 2, BS: 1, VA: 2,
TM: 2, FWT: 1

MM: 2, BS: 1, CONV1: 1,
TM: 6, VA: 5

BK50
MM: 1, BS: 1
VA: 1, TM: 1

MM: 1, BS: 1, PF: 1,
CONV1: 1, TM: 2, VA: 1, FWT: 1

MM: 6, BS: 1, CONV1: 1,
FWT: 1, TM: 5, VA: 2

BK75
MM: 1, BS: 1
PF: 1, VA: 1

MM: 1, BS: 1, PF: 1, PAF: 1,
CONV1: 1, VA: 1, TM: 1, FWT: 1

MM: 10, BS: 1, CONV1: 1,
TM: 2, FWT: 1, VA: 1

BK100 MM: 2, BS: 1, CONV1: 1 MM: 2, BS: 3, CONV1: 3 MM: 14, BS: 1, CONV1: 1

concurrent execution and obtains better results than
the simpler heuristics at an acceptable cost (less than
1ms), but there are several cases where it obtains re-
sults around 80%-90% of the best solution. The last
heuristic, NEH-GPU, is a combination of the best
constructive heuristic with a GPU tasks execution
model; this new heuristic obtains the best results,
above 97.35% for every benchmark and GPU, with
an overhead similar to the SQ heuristic.

TABLE IV

Proximity to the best value obtained by each

heuristic with four threads launching tasks.

BK MJR SI MIP SQ NEH-GPU

K
2
0
c

BK0 99.73% 96.09% 100.00% 93.85% 99.53%
BK25 99.90% 95.69% 98.30% 100.00% 97.35%
BK50 76.08% 85.73% 99.75% 99.61% 100.00%
BK75 92.58% 90.95% 100.00% 81.86% 98.20%
BK100 95.66% 95.71% 100.00% 99.96% 99.84%

G
T

X
9
8
0 BK0 97.41% 96.56% 97.45% 92.59% 100.00%

BK25 99.52% 99.40% 99.77% 95.02% 100.00%
BK50 84.19% 98.33% 90.86% 98.35% 100.00%
BK75 88.63% 99.31% 99.35% 99.95% 100.00%
BK100 95.96% 94.04% 96.04% 95.90% 100.00%

T
it

a
n

X

BK0 100.00% 91.32% 94.91% 88.04% 99.80%
BK25 100.00% 99.87% 99.78% 86.77% 99.85%
BK50 94.07% 98.14% 94.39% 98.36% 100.00%
BK75 72.61% 87.74% 100.00% 87.74% 99.47%
BK100 98.47% 93.78% 97.28% 97.21% 100.00%

The second experiment tries to assess the scalabil-
ity of each heuristic while the number of host threads,
simultaneously launching tasks, is incremented from
four to eight and to sixteen. That is, the five bench-
marks (BK0, BK25 and so on) have been executed
in each architecture using 4, 8 and 16 threads. For
each benchmark and number of threads the mini-
mum makespan has been recorded and the proximity
values to the minimum of all benchmarks have been
averaged to obtain mean proximity values for each
architecture and number of threads. Figure 6 shows
these average results. It can be seen than NEH-GPU
obtains the best results, always above 98% of the best
solution. Only MIP obtains comparable results, and
the rest of heuristics are always below, with many re-
sults in the range of 90% for MJR and SI. It should
also be noticed than NEH-GPU results are more sta-
ble and neither the architecture nor the benchmark
type nor the number of tasks worsen the results.

The third experiment is aimed to reproduce the
more general case where each thread may execute
an entire application. An application typically alter-
nates GPU tasks with CPU computation, and there
is a precedence relationship among the GPU tasks.

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

4 8 16

K20c

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

4 8 16

GTX980

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

4 8 16

Titan X

MJR SI MIP SQ NEH-GPU

Fig. 6. Proximity to the best value obtained with 4, 8 and 16
host threads launching tasks.

That is, any task cannot be launched before the pre-
vious task from that thread has finished. Then, at
any given time, it is possible to launch only the first
ready task of each thread and the host proxy thread
may schedule only this batch of ready tasks. Once
this batch has been scheduled, a new batch with the
next ready tasks could be scheduled. The ordering
of this new batch could be different of the previous
one, thus new streams must be used to enforce the
desired ordering. Nevertheless, any task of this new
batch must fulfill its precedence relationship, that
is, its HtD command must wait for the finalization
of the DtH command of the corresponding task in

the previous batch. This can be achieved by using
CUDA events associated to each command.

Fig. 7. Dependency between tasks launched by the same
thread. HtD0

1 could start at t1, right after the end of

HtD1
0 , but the dependency between task 1 and task 0

delays the beginning to t2, after the end of DtH0
0

Figure 7 shows an example where two threads
launch two tasks. Commands for each task are an-
notated using a subindex for the task index and a
superindex for the thread index. At the beginning
only task 0 of each thread can be executed, there-
fore the proxy can only schedule a batch with these
two tasks (batch 0). Task 1 of both threads (batch
1) can be scheduled later and, if there were no de-
pendencies with tasks of batch 0, they could start at
time t1, right after the last Htd command of batch
0, but the dependency between tasks of the same
thread delays HtD0

1 to time t2, right after the end
of DtH0

0 . In this example, HtD1
1 starts after HtD0

1

because its dependency with respect to DtH1
0 was

already fulfilled.

Heuristics MJR, SI and MIP do not take into
account the precedence constraints, thus they sched-
ule each batch separately. Nevertheless, the proxy
host does take them into account and batches are
executed with the necessary events to comply with
the precedence constraints. SQ and NEH − GPU
use a GPU tasks execution model that can consider
these constraints, thus they schedule each batch tak-
ing into account previous batches.

As in the previous experiment, the five bench-
marks have been executed using 4, 8 and 16 threads
in the three architectures, but instead of consider-
ing only one batch the experiments have been con-
ducted considering 1, 2, 3, and 4 consecutive batches
to assess the impact of dependencies between tasks.
Figure 8 shows the results obtained. Proximity val-
ues for the three architectures have been averaged
to obtain three bar plots, one for each number of
tasks. As the number of batches grows, most heuris-
tics obtain better results. Surprisingly, MJR and SI
obtain better results with respect to SQ when the
number of batches increases, notwithstanding they
do not take into account the precedence constraints.
Nevertheless, NEH − GPU obtains once again the
best results, for each number of batches and tasks.

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

MJR SI MIP SQ NEH-GPU

1 2 3 4 4 tasks

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

MJR SI MIP SQ NEH-GPU

1 2 3 4 8 tasks

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

MJR SI MIP SQ NEH-GPU

1 2 3 4 16 tasks

Fig. 8. Proximity to the best value.

V. Related work

Modern GPUs are broadly used in multitask envi-
ronments, e.g. data centers, where applications run-
ning on CPUs offload specific functions to GPUs in
order to take advantage of the device performance.
This way, it is probable to have several independent
tasks ready to run concurrently in a GPU. In this
context, several works have been published that try
to improve the way tasks are scheduled on GPUs.
Thus, [1] presents a scheduler that protects concur-
rent GPU workloads for interference and supports
two priority scheduling policies that takes into ac-
count the response time and throughput of scheduled
kernels. Another contemporary work [27] proposes
two real-time analysis methods with the goal of pro-
viding predictability while maximizing processing ca-
pabilities. In these early works GPU task cannot be
preempted until completion, which can produce high
GPU response time. To solve this problem, another
work, [3], splits application tasks in smaller jobs that
can be assigned to specific SMs according to a timing
model. Similarly, [8] proposes Kernelet, a runtime
system with dynamic kernel slicing and scheduling
techniques to improve GPU utilization. In [9] a sup-
port for real-time scheduling is presented. It auto-
matically slices a long-running kernel execution into
multiple subkernel launches and splits data trans-

action into multiple chunks at user-level, then in-
serts preemption points between subkernel launches
and memory copy operations at driver-level. Other
recent works propose hardware [5] or software [10]
solutions supporting round-robin or priority-based
techniques to implement both soft-realtime and fair
scheduling policies. Most previous works are focused
on kernel execution and they do not take into ac-
count the transfer of data required to compute those
kernels. In many cases, the time taken by these
transfer is not negligible and can affect the result
of the applied scheduling policy. In addition, un-
like in our proposal, current approaches typically re-
quire to modify the original kernels. Nevertheless,
our scheduling theory framework can be used as well
in these approaches to reformulate them using the
notation presented in Section II.

VI. Conclusions

This paper has discussed how to apply scheduling
theory concepts to the problem of task scheduling
on GPUs. It has been shown that the concurrent
execution of GPU tasks using CUDA streams can be
modelled as a flow shop problem. Under this model,
execution of a GPU task involves a Host to Device
command, a Kernel command, and a Device to Host
command, that are processed by the DMA engines
and the Grid Management Unit. The most impor-
tant advantage of this approach is that an objective
function can be defined and an appropriate solution
from the existing literature can be selected.

As a practical example, it has been studied the
F3|prmu|Cmax problem that arises when several
threads launch independent kernels that can be com-
puted using the same GPU context. Several solutions
found in both the scheduling and the GPU literature
have been presented. Besides, a new heuristic called
NEH-GPU, that combines an existing heuristic with
a GPU tasks execution model, has been developed.
This heuristic can also be included as runtime sup-
port because it does not modify the original kernels
and it has a low overhead.

Several experiments have been conducted to show
the suitability and robustness of this new approach.
Three different GPU architectures, Kepler, Maxwell
and Pascal, have been evaluated. Several real ker-
nels from the CUDA and Rodinia SDK have been
selected to form five benchmarks that reflect differ-
ent composition of dominant transfer and dominant
kernel tasks. Furthermore, the number of tasks and
the number of consecutive batches have been varied
to assess the scalability of the heuristics. In all of
them NEH-GPU has obtained results very close to
the best makespan obtained by any heuristic.

VII. Acknowledgements

This work has been funded by project TIN2016-
80920R (Spanish Ministry of Science and Technol-
ogy) and University of Malaga (Campus de Excelen-
cia Internacional Andalućıa Tech). We gratefully ac-
knowledge the support of NVIDIA Corporation with

the donation of the Titan X Pascal GPU used for
this research.

Referencias

[1] Shinpei Kato, Karthik Lakshmanan, Ragunathan Rajku-
mar, and Yutaka Ishikawa, “Timegraph: Gpu schedul-
ing for real-time multi-tasking environments,” in Pro-
ceedings of the 2011 USENIX Conference on USENIX
Annual Technical Conference, Berkeley, CA, USA, 2011,
USENIXATC’11, pp. 2–2, USENIX Association.

[2] C. Basaran and K. D. Kang, “Supporting preemptive
task executions and memory copies in gpgpus,” in 2012
24th Euromicro Conference on Real-Time Systems, July
2012, pp. 287–296.

[3] Haeseung Lee and Mohammad Abdullah Al Faruque,
“Gpu-evr: Run-time event based real-time scheduling
framework on gpgpu platform,” in Proceedings of the
Conference on Design, Automation & Test in Europe,
3001 Leuven, Belgium, Belgium, 2014, DATE ’14, pp.
220:1–220:6, European Design and Automation Associa-
tion.

[4] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez,
N. Navarro, and M. Valero, “Enabling preemptive multi-
programming on gpus,” in 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA),
June 2014, pp. 193–204.

[5] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke,
“Chimera: Collaborative preemption for multitasking on
a shared gpu,” in Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, New York, NY,
USA, 2015, ASPLOS ’15, pp. 593–606, ACM.

[6] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro,
and Murali Annavaram, “Warped-slicer: Efficient intra-
sm slicing through dynamic resource partitioning for gpu
multiprogramming,” in Proceedings of the 43rd Inter-
national Symposium on Computer Architecture, Piscat-
away, NJ, USA, 2016, ISCA ’16, pp. 230–242, IEEE
Press.

[7] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang,
and M. Guo, “Simultaneous multikernel gpu: Multi-
tasking throughput processors via fine-grained sharing,”
in 2016 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), March 2016, pp.
358–369.

[8] J. Zhong and B. He, “Kernelet: High-throughput gpu
kernel executions with dynamic slicing and scheduling,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 6, pp. 1522–1532, June 2014.

[9] H. Zhou, G. Tong, and C. Liu, “Gpes: a preemptive
execution system for gpgpu computing,” in 21st IEEE
Real-Time and Embedded Technology and Applications
Symposium, April 2015, pp. 87–97.

[10] Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang
Zhou, “Effisha: A software framework for enabling eff-
ficient preemptive scheduling of gpu,” in Proceedings of
the 22Nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, New York, NY, USA,
2017, PPoPP ’17, pp. 3–16, ACM.

[11] NVIDIA, “CUDA Programming Guide,” September
2015.

[12] Khronos Group, “OpenCL 2.0 API Specification,” Octo-
ber 2014.

[13] NVIDIA, “CUDA Samples,” September 2015.
[14] M. R. Garey, D. S. Johnson, and Ravi Sethi, “The Com-

plexity of Flowshop and Jobshop Scheduling,” Mathe-
matics of Operations Research, vol. 1, no. 2, pp. 117–129,
1976.

[15] Rubén Ruiz and Concepción Maroto, “A comprehensive
review and evaluation of permutation flowshop heuris-
tics,” European Journal of Operational Research, vol.
165, no. 2, pp. 479–494, sep 2005.

[16] R.L. Graham, E.L. Lawler, J.K. Lenstra, and
A.H.G.Rinnooy Kan, “Optimization and Approximation
in Deterministic Sequencing and Scheduling: a Survey,”
Annals of Discrete Mathematics, vol. 5, no. C, pp. 287–
326, 1979.

[17] Michael Pinedo, Scheduling. Theory, algorithms, and
systems. With CD-ROM. 3rd ed, 01 2008.

[18] A.J. J. Lázaro-Muñoz, J.M. González-Linares, J. Gómez-
Luna, and N. Guil, “A tasks reordering model to reduce

transfers overhead on GPUs,” Journal of Parallel and
Distributed Computing, vol. 109, pp. 258–271, nov 2017.

[19] Jm Framinan, Jnd Gupta, and R Leisten, “A review
and classification of heuristics for permutation flow-shop
scheduling with makespan objective,” Journal of the Op-
erational Research Society, vol. 55, pp. 1243–1255, 2004.

[20] Ali Allahverdi, C.T. Ng, T.C.E. Cheng, and Mikhail Y
Kovalyov, “A survey of scheduling problems with setup
times or costs,” European Journal of Operational Re-
search, vol. 187, no. 3, pp. 985–1032, jun 2008.

[21] NVIDIA, “Cuda multi-process service,” March 2015.
[22] S.M. Johnson, “Optimal Two- and Three-Stage Produc-

tion Schedules With Set-up Time Included,” Naval Re-
search Logistics Quarterly, vol. 1, pp. 61–68, 1954.

[23] D. S. Palmer, “Sequencing Jobs Through a Multi-Stage
Process in the Minimum Total TimeA Quick Method of
Obtaining a Near Optimum,” Journal of the Operational
Research Society, vol. 16, no. 1, pp. 101–107, mar 1965.

[24] Harvey M. Wagner, “An integer linear-programming
model for machine scheduling,” Naval Research Logis-
tics Quarterly, vol. 6, no. 2, pp. 131–140, jun 1959.

[25] Muhammad Nawaz, E. Emory Enscore, and Inyong Ham,
“A heuristic algorithm for the m-machine, n-job flow-
shop sequencing problem,” Omega, vol. 11, no. 1, pp.
91–95, 1983.

[26] E Taillard, “Some efficient heuristic methods for the flow
shop sequencing problem,” European Journal of Opera-
tional Research, vol. 47, pp. 65–74, 1990.

[27] Glenn A. Elliott and James H. Anderson, “Globally
scheduled real-time multiprocessor systems with gpus,”
Real-Time Syst., vol. 48, no. 1, pp. 34–74, Jan. 2012.

