126 research outputs found

    Communicativeness and Group Work: Towards TBLT and Cooperative Learning

    Get PDF
    This dissertation constitutes the final expression of a year-long learning process and aims to demonstrate a comprehensive acquisition of the knowledge, strategies and skills worked on during the Master in Teacher Training for Obligatory Secondary Education, Sixth Form, Professional Training and Language, Arts and Sports Teaching. The main focus is on communicativeness and group work and how implementing them by means of Task-Based Language Teaching (TBLT) and Cooperative Learning poses a series of advantages over other approaches for both the students and the teacher

    Riesgos ocupacionales y desempeño laboral de las(os) enfermeras(os) en el Hospital Regional - Nuevo Chimbote, 2019

    Get PDF
    The overall objective of the present research was to determine the relationship between occupational risks and the work performance of nurses working in the hospitalization services and critical areas of Nuevo Chimbote Regional Hospital, 2019. The study was quantitative, non-experimental, transectional, correlational. The population and sample consisted of 110 nurses who met the inclusion criteria. The technique used was the survey and the instrument used were questionnaires validated by expert judgment, subjected to the Aiken V dichotomous test and reliability was calculated using the Cronbach's Alpha coefficient. The results were determined using the Spearman Rho coefficient, with the following: The occupational risk level of the nurses is medium, with 61% for chemical risks, 57% for biological risks and 69% for biological risks. ergonomic risks, and the level of work performance is also average level, with 62% for labor productivity, 49% for work efficiency and 65% for work efficiency. Concluding that there is a weak negative relationship (rs = -, 011) not statistically significant (p = 0.911) between both variables’ occupational risks and job performance.La presente investigación tuvo como objetivo general determinar la relación que existe entre los riesgos ocupacionales y el desempeño laboral de las enfermeras que laboran en los servicios de hospitalización y áreas críticas del Hospital Regional Eleazar Guzmán Barrón de Nuevo Chimbote, 2019. El estudio fue de tipo cuantitativo, diseño no experimental, transeccional, correlacional. La población y la muestra estuvieron constituidas por 110 enfermeras que cumplieron con los criterios de inclusión. La técnica empleada fue la encuesta y el instrumento utilizado fueron cuestionarios validados por juicio de expertos, sometidos a la prueba V Aiken Dicotómica y la confiabilidad fue calculada a través del coeficiente Alfa de Cronbach. Los resultados fueron determinados mediante el coeficiente de Rho de Spearman, siendo los siguientes: El nivel de riesgos ocupacionales de las enfermeras (os) es de nivel medio, con un 61% para riesgos químicos, 57% para riesgos biológicos y un 69% para riesgos ergonómicos, y el nivel de desempeño laboral es también nivel medio, con un 62% para productividad laboral, 49% para eficacia laboral y 65% para eficiencia laboral. Concluyendo que existe relación negativa débil (rs= -,011) no estadísticamente significativa (p=0,911) entre ambas variables riesgos ocupacionales y desempeño laboral

    Riesgos ocupacionales y desempeño laboral de las(os) enfermeras(os) en el Hospital Regional Eleazar Guzmán Barrón- Nuevo Chimbote, 2019

    Get PDF
    La presente investigación tuvo como objetivo general determinar la relación que existe entre los riesgos ocupacionales y el desempeño laboral de las enfermeras(os) que laboran en los servicios de hospitalización y áreas críticas del Hospital Regional Eleazar Guzmán Barrón – Nuevo Chimbote, 2019. El estudio fue de tipo cuantitativo, diseño no experimental, transeccional y correlacional. La población estuvo conformada por 110 enfermeras(os). La técnica empleada fue la encuesta y el instrumento de recolección de datos fue el cuestionario. Se utilizó la prueba V. Aiken Dicotómica para validación del instrumento, el coeficiente Alfa de Cronbach para el análisis de confiabilidad y el coeficiente Rho Spearman para determinar la correlación de las variables. Los resultados fueron los siguientes: El nivel de riesgos ocupacionales y desempeño laboral de las enfermeras(os) fue de nivel medio. La relación fue negativa débil, no estadísticamente significativa entre la variable riesgos ocupacionales y las dimensiones de productividad y eficacia, siendo positiva débil, no estadísticamente significativa para la eficiencia. De igual modo la correlación fue negativa débil, no estadísticamente significativa entre la variable desempeño laboral y las dimensiones de riesgos químicos y ergonómicos, siendo positiva débil, no estadísticamente significativa para los riesgos biológicos. La conclusión principal fue que existe relación negativa débil no estadísticamente significativa entre ambas variables: riesgos ocupacionales y desempeño laboral (rs= - ,011), (p= ,911>0,05)

    Mechanochemical modeling of wound healing: Multiphysics finite element simulations

    Get PDF
    Introducción Cicatrizaciónn de heridas La cicatrización de heridas es uno de los problemas de salud que afecta a más pacientes en el mundo. Ya se trate de heridas traumáticas o quirúrgicas la correcta cicatrización de las mismas es fundamental para la recuperación de la funcionalidad y apariencia del tejido. La cicatrización comienza horas después de producirse la herida y puede durar meses o incluso años. El proceso de cicatrización se divide habitualmente en tres etapas superpuestas en el tiempo: infamación, epitelización y remodelación (Singer and Clark, 1999). En cada una de estas etapas tienen lugar distintos procesos interrelacionados los cuales están gobernados por diferentes especies celulares y factores químicos. 1. Inflamación: en esta etapa aparecen nuevas especies celulares como los macrófagos y los neutró¿los, encargadas de eliminar el tejido dañado y bacterias, evitando la infección. Simultáneamente comienza la coagulación de la sangre y se forma una matriz provisional de ¿brina (Gurtner et al., 2008). En esta etapa se liberan distintos factores de crecimiento que desencadenan el comienzo de la siguiente etapa (Gray et al., 1995). La etapa de inflamación dura alrededor de 48 horas. 2. Epitelización: esta etapa se caracteriza por la proliferación y migración de varias especies celulares (¿broblastos, mio¿broblastos y células endoteliales, entre otras) hacia el lugar donde se ha producido la herida. El coágulo formado inicialmente se sustituye por tejido granular y posteriormente se sintetiza una nueva matriz extracelular, compuesta en su mayor parte de colágeno, que proporciona mayor soporte mecánico. Durante esta etapa comienza la revascularización de la zona dañada (angiogénesis), mediante la cual se restablece el aporte de oxígeno y nutrientes al tejido (Gurtner et al., 2008). Además en esta etapa se produce la contracción de la herida a causa de las tensiones ejercidas por las células (¿broblastos y mio¿broblastos) en el tejido. Su duración es de entre 2 y 10 días. 3. Remodelación: en esta etapa el colágeno empieza a formar fibras en un principio de manera dispersa, las cuales se van orientando paralelas a las líneas de tensión de la piel y aumentan su resistencia. El tejido final adquiere propiedades cercanas a las de la piel sana, pero sin llegar a recuperar su funcionalidad inicial. La remodelación puede durar meses o incluso años. El proceso de cicatrización está gobernado por fenómenos bioquímicos, pero también está influido por las propiedades mecánicas del tejido y las cargas mecánicas a las que este se encuentra sometido (Aarabi et al., 2007). Esto se debe a que el comportamiento de las células no solo se ve afectado por la presencia de factores químicos en el tejido, sino que también sienten el ambiente mecánico que les rodea y regulan su actividad en función de él (Mitrossilis et al., 2009, 2010). La comunicación con el ambiente mecánico se realiza por medio de los mecanismos mecanosensor y mecanotransductor (Moreo et al., 2008; Ingber, 2006). Otro de los factores determinantes en la cicatrización de heridas es la orientación de la herida en relación a las líneas de tensión de la piel o líneas de Langer (Langer, 1861). Se ha observado que heridas paralelas a estas líneas curan mejor que las heridas que las atraviesan (Motegi et al., 1984), creando cicatrices de menor tamañoo. En situaciones normales, las heridas pasan por las tres fases anteriormente explicadas durante su curación. Sin embargo, existen situaciones en las que la curación de la herida no es posible por medios naturales. Algunos ejemplos son el caso de las heridas causadas por la inmovilidad del paciente o heridas en pacientes con diversas patologías, como queloides o cicatrices hipertró¿cas (Gauglitz et al., 2011), donde la recuperación de las heridas es más complicada y es necesario aplicar diversas terapias para posibilitar la curación como tratamientos de vacío (VAC). En estos tratamientos se coloca un recubrimiento a la herida y se le aplica presiones negativas mediante una bomba de vacío, para acelerar el crecimiento de tejido y con ello la curación (Argenta and Morykwas, 1997; Scherer et al., 2002). La piel En esta tesis se ha estudiado el proceso de cicatrización de heridas en piel. La piel es el mayor órgano del cuerpo y cubre gran parte de su super¿cie externa (Gray et al., 1995). La piel constituye una barrera entre los órganos internos y las agresiones externas y presenta m¿ múltiples funciones, entre ellas el aislamiento inmunológico, térmico y ante la deshidratación (Fore-P¿iger, 2004). Además de su función protectora, la piel alberga numerosos sistemas necesarios para el buen funcionamiento del cuerpo humano. Entre otros se encuentran los sistemas nervioso, sanguíneo y linfático. La piel presenta un grosor de entre 1,5 mm y 4 mm variando en cada zona del cuerpo (Odland, 1991). Está formada por tres capas de distinto grosor y propiedades, de exterior a interior: epidermis, dermis e hipodermis. Las heridas en la piel normalmente atraviesan la epidermis y alcanzan la dermis, pudiéndola traspasar, llegando a la hipodermis en el caso de las heridas profundas. La piel presenta diferentes propiedades mecánicas en función de su localización, orientación y grosor. Gran parte de la estabilidad mecánica de la piel se debe a las fibras de colágeno presentes en la matriz extracelular (MEC) de la dermis, las cuales se encuentran embebidas en una sustancia fundamental formada por proteoglicanos y ¿bronectinas (Gray et al., 1995). Se trata de una red de fibras de colágeno tipo I entretejidas y con un grado de dispersión variable, las cuales tienden a alinearse con las líneas de tensión de la piel o líneas de Langer (Langer, 1861). Además de la matriz extracelular en la dermis se encuentran numerosas especies celulares con distintas funciones. Entre estas son de gran importancia las células endoteliales, ¿broblastos, macrófagos y neutró¿los. La caracterización de las propiedades mecánicas de la piel es un campo de gran importancia, y en los últimos años se han propuesto numerosos estudios y métodos para ello. En este aspecto, tanto los estudios in-vivo como los estudios in-vitro son de gran importancia. Boyer et al. (2007) estudian las propiedades de la piel caracterizada como un material viscoelástico por medio de un dispositivo de microindentación. Otros estudios caracterizan la piel como un material hiperelástico (Delalleau et al., 2008; Annaidh et al., 2012; Gahagnon et al., 2012). Mientras que los estudios in-vivo proporcionan información de la piel en su medio ambiente natural, los estudios in-vitro permiten realizar experimentos más controlados donde distintos aspectos pueden estudiarse de manera aislada. Por ejemplo, Graham et al. (2004) estudia el comportamiento de las fibras de colágeno al ser deformadas y Hinz et al. (2001) estudia el efecto de la tensión en el tejido granular y en la diferenciación de los mio¿broblastos. Trabajos previos En los últimos años varios autores han propuesto numerosos modelos matemáticos de cicatrización de heridas (Tranquillo and Murray, 1992; Olsen et al., 1995; Javierre et al., 2009; Geris et al., 2010; Murphy et al., 2011). Los primeros modelos incluían simulación de los fenómenos bioquímicos que tienen lugar durante la cicatrización (Tranquillo and Murray, 1992). Posteriormente, estos modelos han evolucionado combinando la in¿uencia de la mecánica junto con la bioquímica (Olsen et al., 1995; Javierre et al., 2009). Estos estudios, se han centrado principalmente en la segunda etapa del proceso de cicatrización y más concretamente en el fenómeno de contracción. En la contracción de heridas no solo intervienen los factores biológicos propios de los procesos ¿siológicos, sino que la mecánica juega un papel fundamental en el mismo. Estos modelos siempre han estudiado heridas super¿ciales, simulándolas por medio de modelos planos (Olsen et al., 1995; Javierre et al., 2009; Murphy et al., 2012), centrándose en su área super¿cial y sin tener en cuenta la profundidad de la herida. Además la mayoría de modelos han simpli¿cado la geometría de la herida, estudiando heridas circulares pudiendo suponer axisimetría por lo que el modelo se reduce a una dimensión (Murphy et al., 2011, 2012; Murray et al., 1998; Sherratt and Murray, 1991; Schugart et al., 2008; Olsen et al., 1996). Esta simpli¿cación limita el número de geometrías a las que pueden aplicarse. Por otra parte Javierre et al. (2009) estudia geometrías en dos dimensiones, más cercanas a la realidad. Otro de los fenómenos que tienen lugar durante la cicatrización de heridas y que más se ha estudiado y modelado es la angiogénesis o crecimiento vascular. Pettet et al. (1996a) desarrolló el primer modelo de angiogénesis en cicatrización de heridas, ampliándolo posteriormente para estudiar el efecto de un factor químico en la curación de heridas patológicas (Pettet et al., 1996b). Posteriormente, diversos autores han propuesto diferentes modelos de simulación de la angiogénesis en los que se estudia el efecto de distintos factores bioquímicos (Maggelakis, 2003; Javierre et al., 2008; Schreml et al., 2010a,b; Schugart et al., 2008; Flegg et al., 2009, 2010). Otros autores han incluido el efecto de factores mecánicos combinándolos con la formación vascular (Manoussaki, 2003; Xue et al., 2009). Experimentación Además del desarrollo de múltiples modelos computacionales para el estudio de la cicatrización de heridas, también se ha trabajado en la experimentación relativa a este proceso. En este aspecto pueden distinguirse dos tipos de estudios: in-vivo e in-vitro. El número de estudios in-vivo es muy reducido, debido a la difícil repetibilidad de los ensayos así como a las estrictas restricciones éticas a las que deben someterse estos ensayos. Además, los estudios existentes no se han realizado con pacientes humanos, sino con distintas especies animales como ratas (McGrath and Simon, 1983) o cerdos (Roy et al., 2009). Por este motivo se han propuesto numerosos estudios in-vitro que reproducen de manera controlada los procesos que tienen lugar durante la cicatrización de heridas (Liang et al., 2007). Objetivos y Metodología El objetivo principal de esta tesis es el estudio mediante simulación computacional del fenómeno de cicatrización de heridas en la piel. Para ello se desarrollará e implementará un modelo computacional que permita reproducir el proceso de contracción bajo diferentes condiciones y en el cual se puedan incluir otros procesos que tienen lugar simultáneamente a la contracción de heridas. El modelo desarrollado incluirá el efecto tanto de factores biológicos (células, factores de crecimiento y colágeno) como factores mecánicos (caracterización mecánica de la piel y contracción celular). Para resolver el problema se utilizará el método de los elementos ¿nitos (MEF). El modelo desarrollado constará de dos partes, una correspondiente al análisis bioquímico del proceso y otra relativa al análisis mecánico. En primer lugar, la evolución de las especies bioquímicas que se estudian en el modelo se evalúaa mediante un sistema de ecuaciones de reacción-difusiónn. Por otra parte, el comportamiento mecánico se modela teniendo en cuenta las relaciones mecánicas fundamentales para el modelo constitutivo del material elegido para caracterizar la piel. Estas dos partes se encuentran conectadas mediante un mecanismo mecanosensor y mecanotransductor, que regula el comportamiento de las células en función de variables mecánicas. El modelo permitirá el estudio de distintos tipos de heridas sujetas a distintas condiciones: Adaptación del modelo para el estudio de heridas planas y heridas profundas, en dos dimensiones. Las heridas planas se caracterizan por su área super¿cial, utilizando hipótesis de tensión plana. Las heridas profundas y largas pueden estudiarse a través de su sección transversal, utilizando hipótesis de deformación plana y en ellas se consideran afectadas varias capas de la piel. Utilización de distintos modelos constitutivos (viscoelástico, hiperelástico isótropo e hiperelástico anisótropo) para caracterizar el comportamiento mecánico de la piel. Incorporación de otros fenómenos que tienen lugar simultáneamente a la contracción de heridas, tales como la angiogénesis. Incorporación de nuevas leyes de comportamiento celular en función de evidencias físicas observadas en estudios experimentales en sustitución de las leyes fenomenológicas propuestas hasta el momento. Resolución de los problemas bioquímico y mecánico de manera totalmente acoplada o desacoplando ambas partes. Estudio de heridas con diferente forma y tamañoo. La capacidad del modelo de reproducir variedad de geometrías permite además la simulación de geometrías de heridas estudiadas en trabajos experimentales y la comparación entre ambos resultados. Conclusión En esta tesis se ha propuesto un modelo mecanobiológico de la curación de heridas, el cual se centra en los procesos de contracción y angiogénesis. El modelo se ha utilizado para el estudio de heridas en dos dimensiones utilizando hipótesis de tensión y deformación planas y heridas en tres dimensiones. Además, se ha incorporado en el modelo la influencia de la anisotropía de la piel, debida a la orientación de las fibras de colágeno en la misma. Bibliografía Aarabi, S., Bhatt, K. A., Shi, Y., Paterno, J., Chang, E. I., Loh, S. A., Holmes, J. W., Longaker, M. T., Yee, H., Gurtner, G. C., OCT 2007. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. Faseb Journal 21 (12), 3250¿3261. Annaidh, A. N., Bruyere, K., Destrade, M., Gilchrist, M. D., Maurini, C., Ottenio, M., Saccomandi, G., AUG 2012. Automated estimation of collagen ¿bre dispersion in the dermis and its contribution to the anisotropic behaviour of skin. Annals of Biomedical Engineering 40 (8), 1666¿1678. Argenta, L., Morykwas, M., JUN 1997. Vacuum-assisted closure: A new method for wound control and treatment: Clinical experience. Annals of Plastic Surgery 38 (6), 563¿576. Boyer, G., Zahouani, H., Le, B. A., Laquieze, L., 2007. In vivo characterization of viscoelastic properties of human skin using dynamic micro-indentation. 2007 Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1-16, 4584¿4587. Delalleau, A., Josse, G., Lagarde, J. ., Zahouani, H., Bergheau, J. ., MAY 2008. A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo. Skin Research and Technology 14 (2), 152¿164. Flegg, J. A., Byrne, H. M., McElwain, L. S., OCT 2010. Mathematical model of hyperbaric oxygen therapy applied to chronic diabetic wounds. Bulletin of mathematical biology 72 (7), 1867¿1891. Flegg, J. A., McElwain, D. L. S., Byrne, H. M., Turner, I. W., JUL 2009. A three species model to simulate application of hyperbaric oxygen therapy to chronic wounds. Plos Computational Biology 5 (7), e1000451. Fore-P¿iger, J., 2004 Oct 2004. The epidermal skin barrier: implications for the wound care practitioner, part i. Advances in Skin & Wound Care 17 (8), 417¿425. Gahagnon, S., Mo¿d, Y., Josse, G., Ossant, F., NOV 15 2012. Skin anisotropy in vivo and initial natural stress e¿ect: A quantitative study using high-frequency static elastography. Journal of Biomechanics 45 (16), 2860¿2865. Gauglitz, G. G., Korting, H. C., Pavicic, T., Ruzicka, T., Jeschke, M. G., JAN-FEB 2011. Hypertrophic scarring and keloids: Pathomechanisms and current and emerging treatment strategies. Molecular Medicine 17 (1-2), 113¿125. Geris, L., Gerisch, A., Schugart, R. C., DEC 2010. Mathematical modeling in wound healing, bone regeneration and tissue engineering. Acta Biotheoretica 58 (4), 355¿367. Graham, J., Vomund, A., Phillips, C., Grandbois, M., OCT 1 2004. Structural changes in human type i collagen ¿brils investigated by force spectroscopy. Experimental cell research 299 (2), 335¿342. Gray, H., Williams, P., Bannister, L., 1995. Gray¿s Anatomy: The Anatomical Basis of Medicine and Surgery. Gray¿s Anatomy. Churchill Livingstone. Gurtner, G. C., Werner, S., Barrandon, Y., Longaker, M. T., MAY 15 2008. Wound repair and regeneration. Nature 453 (7193), 314¿321. Hinz, B., Mastrangelo, D., Iselin, C., Chaponnier, C., Gabbiani, G., SEP 2001. Mechanical tension controls granulation tissue contractile activity and myo¿broblast di¿erentiation. American Journal of Pathology 159 (3), 1009¿1020. Ingber, D. E., MAY 2006. Cellular mechanotransduction: putting all the pieces together again. Faseb Journal 20 (7), 811¿827. Javierre, E., Moreo, P., Doblaré, M., García-Aznar, J. M., OCT 1 2009. Numerical modeling of a mechano-chemical theory for wound contraction analysis. International Journal of Solids and Structures 46 (20), 3597¿3606. Javierre, E., Vermolen, F. J., Vuik, C., van der Zwaag, S., 2008. Numerical Modelling of Epidermal Wound Healing. Springer-Verlag Berlin, Berlin; Heidelberger Platz 3, D14197 Berlin, Germany. Langer, K., 1861. Zur anatomie und physiologie de haut 1. ueber der spaltbarkeit der cutis. Sitzungsbericht der Akademie der Wissenschaften in Wien 44, 19. Liang, C.-C., Park, A. Y., Guan, J.-L., 2007. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols 2 (2), 329¿333, pT: J; NR: 5; TC: 462; J9: NAT PROTOC; PG: 5; GA: 262GX; UT: WOS:000253138100013. Maggelakis, S., MAR 2003. A mathematical model of tissue replacement during epidermal wound healing. Applied Mathematical Modelling 27 (3), 189¿196. Manoussaki, D., JUL-AUG 2003. A mechanochemical model of angiogenesis and vasculogenesis. Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique 37 (4), 581¿599. McGrath, M., Simon, R., 1983. Wound geometry and the kinetics of wound contraction. Plastic and Reconstructive Surgery 72 (1), 66¿72. Mitrossilis, D., Fouchard, J., Guiroy, A., Desprat, N., Rodriguez, N., Fabry, B., Asnacios, A., OCT 27 2009. Single-cell response to sti¿ness exhibits muscle-like behavior. Proceedings of the National Academy of Sciences of the United States of America 106 (43), 18243¿18248. Mitrossilis, D., Fouchard, J., Pereira, D., Postic, F., Richert, A., Saint-Jean, M., Asnacios, A., SEP 21 2010. Real-time single-cell response to sti¿ness. Proceedings of the National Academy of Sciences of the United States of America 107 (38), 16518¿16523. Moreo, P., García-Aznar, J. M., Doblaré, M., MAY 2008. Modeling mechanosensing and its e¿ect on the migration and proliferation of adherent cells rid f-8256-2010. Acta Biomaterialia 4 (3), 613¿621. Motegi, K., Nakano, Y., Namikawa, A., 1984. Relation between cleavage lines and scar tissues. Journal of maxillofacial surgery 12 (1), 21¿28. Murphy, K. E., Hall, C. L., Maini, P. K., McCue, S. W., McElwain, D. L. S., MAY 2012. A ¿brocontractive mechanochemical model of dermal wound closure incorporating realistic growth factor kinetics. Bulletin of mathematical biology 74 (5), 1143¿1170. Murphy, K. E., Hall, C. L., McCue, S. W., McElwain, D. L. S., MAR 7 2011. A twocompartment mechanochemical model of the roles of transforming growth factor beta and tissue tension in dermal wound healing. Journal of theoretical biology 272 (1), 145¿159. Murray, J. D., Cook, J., Tyson, R., Lubkin, S. R., MAR 1998. Spatial pattern formation in biology: I. dermal wound healing. ii. bacterial patterns. Journal of the Franklin Institute-Engineering and Applied Mathematics 335B (2), 303¿332. Odland, G., 1991. Structure of the skin. In: Goldsmith, L.A. (editor) Physiology, biochemistry, and molecular biology of the skin. Oxford University Press, Oxford. Olsen, L., Sherratt, J. A., Maini, P. K., NOV 21 1995. A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement pro¿le. Journal of theoretical biology 177 (2), 113¿128. Olsen, L., Sherratt, J. A., Maini, P. K., JUL 1996. A mathematical model for ¿broproliferative wound healing disorders. Bulletin of mathematical biology 58 (4), 787¿808. Pettet, G., Byrne, H., Mcelwain, D., Norbury, J., AUG 1996a. A model of wound-healing angiogenesis in soft tissue. Mathematical biosciences 136 (1), 35¿63. Pettet, G., Chaplain, M., McElwain, D., Byrne, H., NOV 22 1996b. On the role of angiogenesis in wound healing rid a-5355-2010. Proceedings of the Royal Society of London Series B-Biological Sciences 263 (1376), 1487¿1493. Roy, S., Biswas, S., Khanna, S., Gordillo, G., Bergdall, V., Green, J., Marsh, C. B., Gould, L. J., Sen, C. K., MAY 2009. Characterization of a preclinical model of chronic ischemic wound. Physiological Genomics 37 (3), 211¿224. Scherer, L., Shiver, S., Chang, M., Meredith, J., Owings, J., AUG 2002. The vacuum assisted closure device - a method of securing skin grafts and improving graft survival. Archives of Surgery 137 (8), 930¿933. Schreml, S., Szeimies, R. M., Prantl, L., Karrer, S., Landthaler, M., Babilas, P., AUG 2010a. Oxygen in acute and chronic wound healing. British Journal of Dermatology 163 (2), 257¿268. Schreml, S., Szeimies, R.-M., Prantl, L., Landthaler, M., Babilas, P., NOV 2010b. Wound healing in the 21st century. Journal of the American Academy of Dermatology 63 (5), 866¿881. Schugart, R. C., Friedman, A., Zhao, R., Sen, C. K., FEB 19 2008. Wound angiogenesis as a function of tissue oxygen tension: A mathematical model. Proceedings of the National Academy of Sciences of the United States of America 105 (7), 2628¿2633. Sherratt, J., Murray, J., 1991. Mathematical-analysis of a basic model for epidermal wound-healing. Journal of mathematical biology 29 (5), 389¿404. Singer, A., Clark, R., SEP 2 1999. Mechanisms of disease - cutaneous wound healing. New England Journal of Medicine 341 (10), 738¿746. Tranquillo, R., Murray, J., SEP 21 1992. Continuum model of ¿broblast-driven wound cont

    Morphological characters and presence of Maecolaspis monrosi Bechyné (Coleoptera: Chrysomelidae: Eumolpinae) in soybean in Tucumán province (Argentina)

    Get PDF
    En muestreos realizados en Tucumán (Argentina) se observó por primera vez a Maecolaspis monrosi Bechyné dañando cultivos de soja. La especie es un crisomélido eumolpino peteneciente al grupo de Maecolaspis lebasi. Las especies de este grupo son muy difíciles de reconocer reconocer ya que poseen similar coloración y punteado elitral. El objectivo objetivode este trabajo es identificar a M. monrosi agregando nuevos caracteres diagnósticos: piezas bucales, venación alar y genitalia masculina y femenina. Se describe por primera vez al macho de M. monrosi y se aportan nuevos datos de plantas hospedadoras.In samplings carried out in Tucumán (Argentina) Maecolaspis monrosi Bechyné was observed for the first time damaging soybean. This species is a chrysomelid Eumolpinae which belonged to Maecolaspis lebasi group. Species of this group are very hard to recognize because all of them possess similar coloration and elytral punctate. The objective of this paper is the identification of M. monrosi adding new diagnostic characters: mouth parts, alar venation and male and female genitalia. The male of M. monrosi is described for the first time and new host plants are recorded.Fil: Cabrera, Nora Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Departamento Científico de Entomología; ArgentinaFil: Lázaro, Hugo. Universidad Nacional de Tucuman. Facultad de Agronomia y Zootecnia. Cátedra de Zoología Agrícola; ArgentinaFil: Nasca, Antonio. Universidad Nacional de Tucuman. Facultad de Agronomia y Zootecnia. Cátedra de Zoología Agrícola; Argentin

    EDUCATION IN COOPERATIVE CELLS AS A SOCIAL INNOVATION: A CASE STUDY IN THE BRAZILIAN SEMIARID

    Get PDF
    Social innovation’s fundamental objective is to promote life quality. Any new initiative with this purpose might be considered a social innovation. From this concept, it is perceived as social innovation the efforts of the Programa de Educa¸cão em Células Cooperativas (PRECE), an initiative originated in Pentecoste, a municipality in the state of Ceará, located in the Brazilian semiarid region. This program has benefitted hundreds of youngsters, enabling their access to knowledge and further approval in university entrance exams. The educational method of collaboration in cells made possible broadening the horizons of many youngsters coming from rural communities, even when lessons were ministered under a tree in the middle of a farm. The objective of this study is to identify the dimensions of social innovation, according to Tardif and Harrisson (2005), existing in the PRECE’s proposal. It is aimed to evidence how the initiative is composed, bringing to light the essential elements that make it social innovative. A case study of PRECE was carried out through qualitative research. Data were collected via semistructured interviews with members of the direction and coordination of the Program, and analyzed using the software NVivo 10. The results highlighted how the dimensions of social innovation are composed within PRECE. This research contributes by foregrounding a social initiative that has been capable of changing individual realities in the Brazilian semiarid and showing how such initiative is constituted in the social innovative perspective

    Social innovation and the promotion of local economic development

    Get PDF
    Purpose – The purpose of this study is to propose a multidimensional view of social innovation. Design/methodology/approach – It offers a detailed analysis of the activities performed by ADEL (Agência de Desenvolvimento Econômico Local) – a regional non-governmental organization located in one of the poorest regions of Brazil – which is succeeding in engaging young people in the promotion of local development. The case was analysed drawing on the dimensions structured by researchers of one of the main centres of social innovation in the world, the Centre de Recherche sur Les Innovations Sociales (CRISES) based in Canada. Findings – The results found characterize ADEL as a social innovation based on the dimensions of social innovation described in the CRISES’ conceptual encyclopaedia (Tardif and Harrison, 2005). The results highlight the singularities of the case studied, which allowed the elaboration of a revisited table of dimensions proposed by the CRISES’ researchers. Research limitations/implications – For future studies, using the CRISES’ table as reference of analysis for other social innovations, the possibility suggested is the quantitative exploration of these dimensions. Originality/value – The originality of this article lies in the fact that it presents a representative social innovation for the Brazilian semiarid

    Analysis and implementation of the Buck-Boost Modified Series Forward converter applied to photovoltaic systems

    Get PDF
    The mismatching phenomenon is one of the main issues in photovoltaic (PV) applications. It could reduce the generated power of a string when a PV panel has different performances from the other PV panels connected to the same string. Distributed Maximum Power Point Tracking (DMPPT) architectures are one of the most promising solutions to overcome the drawbacks associated with mismatching phenomena in PV applications. In this kind of architectures, a DC-DC module integrated converter (MIC) manages each PV panel, isolating it from the rest of the PV panels, for harvesting the maximum available power from the Sun. Due to the high number of DCDC converters used in a grid-tied PV installation, the most desired MIC requirements are high efficiency, low cost and the capability of voltage step-up and step-down. This paper proposes the Buck-Boost Modified Forward (BBMSF) converter as a good candidate to be applied in DMPPT architectures. A complete analysis of the BBMSF converter is carried out, including the steady-state analysis as well as the small signal analysis in continuous conduction mode. The main advantages of the BBMSF converter are its step-up and step-down voltage transfer function; a higher simplicity, since it only includes a single controlled switch; the soft switching characteristics in all the diodes and MOSFET, reaching in some cases ZVS and ZCS, and yielding high efficiencies; the use of an autotransformer, with better performances than a typical Forward transformer; and the good dynamic performance, like the Forward converter ones. The theoretical analyses are validated through the experimental results in a 225 W BBMSF prototype designed and built under the requirements of a 100 kW grid-tied PV installation, achieving an efficiency up to 93.6%.This work has been supported by the Ministry of Economy and Competitiveness and FEDER funds through the research project "Storage and Energy Management for Hybrid Electric Vehicles based on Fuel Cell, Battery and Supercapacitors" - ELECTRICAR-AG- (DPI2014-53685-C2-1-R)

    Analysis, design, and implementation of the AFZ converter applied to photovoltaic systems

    Get PDF
    Grid-tied photovoltaic (PV) installations with Distributed Maximum Power Point Tracking (DMPPT) architectures include a DC-DC Module Integrated Converter (MIC) for managing each PV panel, isolating it from the others, reducing the mismatching effect and maximizing the harvested power. In this paper, the Autotransformer Forward converter with type-Zeta resonant reset (AFZ) is proposed as a DMPPT architecture’s MIC candidate. The main characteristics of the AFZ converter are the high versatility due to its voltage step-up and step-down capability; the use of an optimized autotransformer with only two windings, reducing the complexity and power losses of this component; the good dynamic performances, like the Forward converter ones; the low number of components and the simplicity and high feasibility associated to the use of just one active switch. Besides, soft switching transitions are achieved thanks to the autotransformer type-Zeta resonant reset. The steady-state theoretical analysis, considering the effect of the autotransformer leakage inductance, is presented. The converter is also studied in the frequency domain, obtaining the small-signal transfer functions. A design procedure based on the requirements of a 100 kW grid-tied photovoltaic installation is described, yielding in a 225 W prototype with efficiencies up to 95.6 %. Experimental results validate the theoretical analysis.This work was supported in part by the Spanish Ministry of Economy and Competitiveness and FEDER funds through the research project “Storage and Energy Management for Hybrid Electric Vehicles based on Fuel Cell, Battery and Supercapacitors” ELECTRICAR-AG under Grant DPI2014-53685-C2-1-R, in part by the research project CONEXPOT under Grant DPI2017-84572-C2-2-R, and in part by the research project EPIIOT under Grant DPI2017-88062-R

    Small-signal modeling of phase-shifted full-bridge converter considering the delay associated to the leakage inductance

    Get PDF
    This paper demonstrates that in the Phase-Shifted Full-Bridge (PSFB) buck-derived converter, there is a random delay associated with the blanking time produced by the leakage inductance. This random delay predicts the additional phase drop that is present in the frequency response of the open-loop audio-susceptibility transfer function when the converter shows a significant blanking time. The existing models of the PSFB converter do not contemplate the delay and gain differences associated to voltage drop produced in the leakage inductor of the transformer. The small-signal model proposed in this paper is based on the combination of two types of analysis: the first analysis consists of obtaining a small-signal model using the average modeling technique and the second analysis consists of studying the natural response of the power converter. The dynamic modeling of the Phase-Shifted Full-Bridge converter, including the random delay, has been validated by simulations and experimental test.This research was funded by the European Regional Development Fund, the Ministry of Science, Innovation and Universities and the State Research Agency, grant number DPI2017-84572-C2-2-R
    corecore