41 research outputs found

    Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays

    Get PDF
    Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7–34 μm and was controlled by the PRX concentration in the feed solution (15–25 g L¯¹), antisolvent/solvent volume ratio (5–30), and type of antisolvent (Milli-Q water or 0.1–0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L¯¹ PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals

    Targeting Cellular Signalling Pathways in Lung Diseases

    Full text link
    The book comprehensively reviews and provides detailed insight into the cellular and molecular signalling mechanisms involved in pathophysiology of various respiratory diseases, towards developing effective therapeutic strategies in the ..

    Production and characterization of antibodies against crosslinked gelatin nanoparticles and first steps toward developing an ELISA screening kit

    No full text
    Nanotechnologies are finding a growing range of applications in the food sector. Nanoparticles are used notably to add vitamins and other nutrients to foods and beverages without affecting taste and color. They are also used to develop new tastes, preserve food texture, control the release of flavors, improve the bioavailability of compounds such as antioxidants and vitamins, and monitor freshness with nanosensors. Crosslinked gelatin nanoparticles are a component of nano-sized carriers for nutrient and supplement delivery in foods and related products. This paper describes the production and characterization of polyclonal antibodies against gelatin nanoparticles. Two immunization schemes were investigated: subcutaneous injection with and without a first intravenous injection. Two enzyme-linked immunosorbent assay formats were used to characterize the antibodies: an inhibition format with an antigen-coated plate for detection of the immune response and a sandwich format for development of the method. The antibodies showed good sensitivity with an IC50 equal to 0.11 ng mL-1 using indirect ELISA format and a good specificity for the nanomaterials, without significant cross-reactivity against native gelatin. The limit of detection was determined—0.42, 0.27, 0.26, and 0.24 µg mL-1 for apple, orange juice, milk, and soft drink matrices, respectively. ELISA technology offers rapid, low-cost assays for screening foods, feeds, and beverages. We have studied a prototype ELISA for detection of gelatin-based nanocarrier systems. Fruit juices, milk, and a soft drink were the matrices selected for assay development

    Evaluation of various dissolution media for predicting In vivo performance of class I and II drugs

    No full text
    Purpose. In this paper we seek to verify the differences in dissolution behavior between class I and class II drugs and to evaluate the suitability of two new physiologically based media, of Simulated Gastric Fluid (SGF) and of milk for their ability to forecast trends in the in vivo performance of class II compounds and their formulations. Methods. Dissolution behavior of two class I drugs, i.e. acetaminophen and metoprolol, and of three class II drugs, i.e. danazol, mefenamic acid and ketoconazole, was studied with USP Apparatus 2 in water, SGF, milk, Simulated Intestinal Fluid without pancreatin (SIF(sp)) and in two media simulating the small intestinal contents in the fed (FeSSIF) and fasted (FaSSIF) states, respectively. Results. Class I powders dissolved rapidly in all media tested. Acetaminophen dissolution in milk was slow from one tablet formulation, in all other cases dissolution was more than 85% complete in 15 minutes. The dissolution rate of metoprolol was shown to be dependent on formulation and manufacturing method, and one of the three tablet formulations did not meet compendial specifications (80%/30 minutes). Dissolution behavior of class II drugs was greatly affected by choice of medium. Dissolution from a capsule formulation of danazol proved to be dependent on the concentration of solubilizing agents, with a the 30-fold increase in percentage dissolved within 90 minutes upon changing from aqueos media without surfactants to FaSSIF. Use of FeSSIF or milk as the dissolution medium resulted in an even greater increase in percentage dissolved, 100 and 180-fold respectively. Dissolution of the weak acid mefenamic acid from a capsule formulation is dependent on both pH and bile salt concentration, which leads to an offset between increased bile salt concentration and lower pH in the fed state compared to the fasted state medium. The weak base ketoconazole showed complete dissolution from a tablet formulation in Simulated Gastric Fluid without pepsin (SGF(sp)) within 30 minutes, 70% dissolution in 2 hours under fed state simulated upper jejunal conditions but only 6% dissolution in 2 hours under fasted state conditions. Conclusions. As predicted, dissolution of class II drugs proved to be in general much more dependent on the medium than class I drugs. With the array of compendial and physiological media available, it should be possible to design a suitable set of tests to predict the in vivo dissolution of both class I and II drugs from immediate release formulations
    corecore