33 research outputs found

    Critical Appraisal of C-Reactive Protein Throughout the Spectrum of Cardiovascular Disease

    Get PDF
    Clinicians involved in the care of patients with cardiovascular conditions have recently been confronted with an important body of literature linking inflammation and cardiovascular disease. Indeed, the level of systemic inflammation as measured by circulating levels of C-reactive protein (CRP) has been linked to prognosis in patients with atherosclerotic disease, congestive heart failure, atrial fibrillation, myocarditis, aortic valve disease and heart transplantation. In addition, a number of basic science reports suggest an active role for CRP in the pathophysiology of cardiovascular diseases. This article explores the potential role of CRP in disease initiation, progression, and clinical manifestations and reviews its role in the prediction of future events in clinical practice. Therapeutic interventions to decrease circulating levels of CRP are also reviewed

    Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: A randomized trial

    Full text link
    AIM: High-density lipoproteins (HDLs) have several potentially protective vascular effects. Most clinical studies of therapies targeting HDL have failed to show benefits vs. placebo. OBJECTIVE: To investigate the effects of an HDL-mimetic agent on atherosclerosis by intravascular ultrasonography (IVUS) and quantitative coronary angiography (QCA). DESIGN AND SETTING: A prospective, double-blinded, randomized trial was conducted at 51 centres in the USA, the Netherlands, Canada, and France. Intravascular ultrasonography and QCA were performed to assess coronary atherosclerosis at baseline and 3 (2-5) weeks after the last study infusion. PATIENTS: Five hundred and seven patients were randomized; 417 and 461 had paired IVUS and QCA measurements, respectively. INTERVENTION: Patients were randomized to receive 6 weekly infusions of placebo, 3 mg/kg, 6 mg/kg, or 12 mg/kg CER-001. MAIN OUTCOME MEASURES: The primary efficacy parameter was the nominal change in the total atheroma volume. Nominal changes in per cent atheroma volume on IVUS and coronary scores on QCA were also pre-specified endpoints. RESULTS: The nominal change in the total atheroma volume (adjusted means) was -2.71, -3.13, -1.50, and -3.05 mm(3) with placebo, CER-001 3 mg/kg, 6 mg/kg, and 12 mg/kg, respectively (primary analysis of 12 mg/kg vs. placebo: P = 0.81). There was also no difference among groups for the nominal change in per cent atheroma volume (0.02, -0.02, 0.01, and 0.19%; nominal P = 0.53 for 12 mg/kg vs. placebo). Change in the coronary artery score was -0.022, -0.036, -0.022, and -0.015 mm (nominal P = 0.25, 0.99, 0.55), and change in the cumulative coronary stenosis score was -0.51, 2.65, 0.71, and -0.77% (compared with placebo, nominal P = 0.85 for 12 mg/kg and nominal P = 0.01 for 3 mg/kg). The number of patients with major cardiovascular events was 10 (8.3%), 16 (13.3%), 17 (13.7%), and 12 (9.8%) in the four groups. CONCLUSION: CER-001 infusions did not reduce coronary atherosclerosis on IVUS and QCA when compared with placebo. Whether CER-001 administered in other regimens or to other populations could favourably affect atherosclerosis must await further study. Name of the trial registry: Clinicaltrials.gov; Registry's URL: http://clinicaltrials.gov/ct2/show/NCT01201837?term=cer-001&rank=2; TRIAL REGISTRATION NUMBER: NCT01201837

    Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial†

    Get PDF
    Aim High-density lipoproteins (HDLs) have several potentially protective vascular effects. Most clinical studies of therapies targeting HDL have failed to show benefits vs. placebo. Objective To investigate the effects of an HDL-mimetic agent on atherosclerosis by intravascular ultrasonography (IVUS) and quantitative coronary angiography (QCA). Design and setting A prospective, double-blinded, randomized trial was conducted at 51 centres in the USA, the Netherlands, Canada, and France. Intravascular ultrasonography and QCA were performed to assess coronary atherosclerosis at baseline and 3 (2-5) weeks after the last study infusion. Patients Five hundred and seven patients were randomized; 417 and 461 had paired IVUS and QCA measurements, respectively. Intervention Patients were randomized to receive 6 weekly infusions of placebo, 3 mg/kg, 6 mg/kg, or 12 mg/kg CER-001. Main outcome measures The primary efficacy parameter was the nominal change in the total atheroma volume. Nominal changes in per cent atheroma volume on IVUS and coronary scores on QCA were also pre-specified endpoints. Results The nominal change in the total atheroma volume (adjusted means) was −2.71, −3.13, −1.50, and −3.05 mm3 with placebo, CER-001 3 mg/kg, 6 mg/kg, and 12 mg/kg, respectively (primary analysis of 12 mg/kg vs. placebo: P = 0.81). There was also no difference among groups for the nominal change in per cent atheroma volume (0.02, −0.02, 0.01, and 0.19%; nominal P = 0.53 for 12 mg/kg vs. placebo). Change in the coronary artery score was −0.022, −0.036, −0.022, and −0.015 mm (nominal P = 0.25, 0.99, 0.55), and change in the cumulative coronary stenosis score was −0.51, 2.65, 0.71, and −0.77% (compared with placebo, nominal P = 0.85 for 12 mg/kg and nominal P = 0.01 for 3 mg/kg). The number of patients with major cardiovascular events was 10 (8.3%), 16 (13.3%), 17 (13.7%), and 12 (9.8%) in the four groups. Conclusion CER-001 infusions did not reduce coronary atherosclerosis on IVUS and QCA when compared with placebo. Whether CER-001 administered in other regimens or to other populations could favourably affect atherosclerosis must await further study. Name of the trial registry: Clinicaltrials.gov; Registry's URL: http://clinicaltrials.gov/ct2/show/NCT01201837?term=cer-001&rank=2; Trial registration number: NCT0120183

    Imaging and functional assessment of bioresorbable scaffolds

    No full text
    Bioresorbable vascular scaffolds (BRS) are novel devices designed to provide transient vessel support to drug-delivery capability without the potential long-term limitations of metallic drug-eluting stents. The technology, heralded as the latest revolution in the field of percutaneous coronary intervention, could overcome many of the long-term safety concerns associated with metallic stents and possibly even convey a further clinical benefit. However, despite its theoretical advantages, the safety and efficacy of the first generation BRS remain unclear in all-comer patient populations. Invasive imaging modalities and methodologies were developed to guide BRS implantation and monitor the interaction between the scaffold and the vessel at long-term follow-up. These tools are helpful to avoid some of the pitfalls associated with BRS implantation and may improve the clinical outcome of these devices. The present review aims to report the most recent data regarding multi-imaging modalities as guidance and follow-up of coronary interventions involving the use of BRS

    Critical Appraisal of C-Reactive Protein Throughout the Spectrum of Cardiovascular Disease-1

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Critical Appraisal of C-Reactive Protein Throughout the Spectrum of Cardiovascular Disease"</p><p></p><p>Vascular Health and Risk Management 2006;2(3):221-237.</p><p>Published online Jan 2006</p><p>PMCID:PMC1993979.</p><p>© 2006 Dove Medical Press Limited. All rights reserved</p
    corecore