10 research outputs found

    The Fantastic Four: A plug 'n' play set of optimal control pulses for enhancing nmr spectroscopy

    Full text link
    We present highly robust, optimal control-based shaped pulses designed to replace all 90{\deg} and 180{\deg} hard pulses in a given pulse sequence for improved performance. Special attention was devoted to ensuring that the pulses can be simply substituted in a one-to-one fashion for the original hard pulses without any additional modification of the existing sequence. The set of four pulses for each nucleus therefore consists of 90{\deg} and 180{\deg} point-to-point (PP) and universal rotation (UR) pulses of identical duration. These 1 ms pulses provide uniform performance over resonance offsets of 20 kHz (1H) and 35 kHz (13C) and tolerate reasonably large radio frequency (RF) inhomogeneity/miscalibration of (+/-)15% (1H) and (+/-)10% (13C), making them especially suitable for NMR of small-to-medium-sized molecules (for which relaxation effects during the pulse are negligible) at an accessible and widely utilized spectrometer field strength of 600 MHz. The experimental performance of conventional hard-pulse sequences is shown to be greatly improved by incorporating the new pulses, each set referred to as the Fantastic Four (Fanta4).Comment: 28 pages, 19 figure

    Optimal Control Design of Excitation Pulses That Accommodate Relaxation

    No full text
    An optimal control algorithm for mitigating the effects of T1 and T2 relaxation during the application of long pulses is derived. The methodology is applied to obtain broadband excitation that is not only tolerant to RF inhomogeneity typical of high resolution probes, but is relatively insensitive to relaxation effects for T1 and T2 equal to the pulse length. The utility of designing pulses to produce specific phase in the final magnetization is also presented. The results regarding relaxation and optimized phase are quite general, with many potential applications beyond the specific examples presented here

    Optimal Control Design of Excitation Pulses That Accommodate Relaxation

    No full text
    An optimal control algorithm for mitigating the effects of T1 and T2 relaxation during the application of long pulses is derived. The methodology is applied to obtain broadband excitation that is not only tolerant to RF inhomogeneity typical of high resolution probes, but is relatively insensitive to relaxation effects for T1 and T2 equal to the pulse length. The utility of designing pulses to produce specific phase in the final magnetization is also presented. The results regarding relaxation and optimized phase are quite general, with many potential applications beyond the specific examples presented here

    Optimal Control Design of Excitation Pulses That Accommodate Relaxation

    No full text
    An optimal control algorithm for mitigating the effects of T1 and T2 relaxation during the application of long pulses is derived. The methodology is applied to obtain broadband excitation that is not only tolerant to RF inhomogeneity typical of high resolution probes, but is relatively insensitive to relaxation effects for T1 and T2 equal to the pulse length. The utility of designing pulses to produce specific phase in the final magnetization is also presented. The results regarding relaxation and optimized phase are quite general, with many potential applications beyond the specific examples presented here

    Optimal Control Design of Excitation Pulses That Accommodate Relaxation

    No full text
    An optimal control algorithm for mitigating the effects of T1 and T2 relaxation during the application of long pulses is derived. The methodology is applied to obtain broadband excitation that is not only tolerant to RF inhomogeneity typical of high resolution probes, but is relatively insensitive to relaxation effects for T1 and T2 equal to the pulse length. The utility of designing pulses to produce specific phase in the final magnetization is also presented. The results regarding relaxation and optimized phase are quite general, with many potential applications beyond the specific examples presented here

    Optimal Control Design of Excitation Pulses That Accommodate Relaxation

    No full text
    An optimal control algorithm for mitigating the effects of T1 and T2 relaxation during the application of long pulses is derived. The methodology is applied to obtain broadband excitation that is not only tolerant to RF inhomogeneity typical of high resolution probes, but is relatively insensitive to relaxation effects for T1 and T2 equal to the pulse length. The utility of designing pulses to produce specific phase in the final magnetization is also presented. The results regarding relaxation and optimized phase are quite general, with many potential applications beyond the specific examples presented here

    The Fantastic Four: A Plug ‘N’ Play Set of Optimal Control Pulses for Enhancing NMN Spectroscopy

    No full text
    We present highly robust, optimal control-based shaped pulses designed to replace all 90° and 180° hard pulses in a given pulse sequence for improved performance. Special attention was devoted to ensuring that the pulses can be simply substituted in a one-to-one fashion for the original hard pulses without any additional modification of the existing sequence. The set of four pulses for each nucleus therefore consists of 90° and 180° point-to-point (PP) and universal rotation (UR) pulses of identical duration. These 1 ms pulses provide uniform performance over resonance offsets of 20 kHz (1H) and 35 kHz (13C) and tolerate reasonably large radio frequency (RF) inhomogeneity/miscalibration of ±15% (1H) and ±10% (13C), making them especially suitable for NMR of small-to-medium-sized molecules (for which relaxation effects during the pulse are negligible) at an accessible and widely utilized spectrometer field strength of 600 MHz. The experimental performance of conventional hard-pulse sequences is shown to be greatly improved by incorporating the new pulses, each set referred to as the Fantastic Four (Fanta4)

    The Fantastic Four: A Plug ‘N’ Play Set of Optimal Control Pulses for Enhancing NMN Spectroscopy

    No full text
    We present highly robust, optimal control-based shaped pulses designed to replace all 90° and 180° hard pulses in a given pulse sequence for improved performance. Special attention was devoted to ensuring that the pulses can be simply substituted in a one-to-one fashion for the original hard pulses without any additional modification of the existing sequence. The set of four pulses for each nucleus therefore consists of 90° and 180° point-to-point (PP) and universal rotation (UR) pulses of identical duration. These 1 ms pulses provide uniform performance over resonance offsets of 20 kHz (1H) and 35 kHz (13C) and tolerate reasonably large radio frequency (RF) inhomogeneity/miscalibration of ±15% (1H) and ±10% (13C), making them especially suitable for NMR of small-to-medium-sized molecules (for which relaxation effects during the pulse are negligible) at an accessible and widely utilized spectrometer field strength of 600 MHz. The experimental performance of conventional hard-pulse sequences is shown to be greatly improved by incorporating the new pulses, each set referred to as the Fantastic Four (Fanta4)
    corecore