41 research outputs found

    Insulin sensitivity and Lp(α) concentrations in normoglycemic offspring of type 2 diabetic parents

    Get PDF
    BACKGROUND: Offspring of at least 1 parent with type 2 diabetes are more resistant to the insulin action, exhibit higher incidence of dyslipidemia and are more prone to cardiovascular diseases. The association between Lp(α) and coronary heart disease is well established. An association between Lp(α) concentration and insulin sensitivity was examined in this study. We investigated the serum LP(α) in 41 offspring of 41 families of type 2 diabetic subjects (group I) with normal glucose tolerance, compared to 49 offspring who their parents had no history of type 2 diabetes, matched for sex, age, BMI, WHR and blood pressure (group II). Serum Lp(α), triglycerides, insulin resistant index, HDL, LDL-cholesterol and insulin were measured. RESULTS: The offspring of type 2 diabetic subjects had higher fasting serum triglycerides (mean ± SD 199.3 ± 184.2 vs. 147.1 ± 67.9 ng/dl, p < 0.05) lower HDL-cholesterol (37.3 ± 9.0 vs. 44.6 ± 7.8, p < 0.001) and particularly higher Insulin resistance Index (HOMA-IR) (2.84 ± 1.39 vs. 1.67 ± 0.77, p < 0.001). They also had higher serum LP(α) concentration (15.4 ± 6.7 vs. 8.6 ± 6.0, p < 0.001). By simple linear analysis in the offspring of type 2 diabetic parents there was no correlation of Lp(α) concentration with insulin resistance index Homa-IR (r = 0,016 p = NS). CONCLUSIONS: We conclude that serum LP(α) is significantly increased in offspring of type 2 diabetic subjects but was not related to insulin sensitivity

    EMT Factors and Metabolic Pathways in Cancer.

    Get PDF
    The epithelial-mesenchymal transition (EMT) represents a biological program during which epithelial cells lose their cell identity and acquire a mesenchymal phenotype. EMT is normally observed during organismal development, wound healing and tissue fibrosis. However, this process can be hijacked by cancer cells and is often associated with resistance to apoptosis, acquisition of tissue invasiveness, cancer stem cell characteristics, and cancer treatment resistance. It is becoming evident that EMT is a complex, multifactorial spectrum, often involving episodic, transient or partial events. Multiple factors have been causally implicated in EMT including transcription factors (e.g., SNAIL, TWIST, ZEB), epigenetic modifications, microRNAs (e.g., miR-200 family) and more recently, long non-coding RNAs. However, the relevance of metabolic pathways in EMT is only recently being recognized. Importantly, alterations in key metabolic pathways affect cancer development and progression. In this review, we report the roles of key EMT factors and describe their interactions and interconnectedness. We introduce metabolic pathways that are involved in EMT, including glycolysis, the TCA cycle, lipid and amino acid metabolism, and characterize the relationship between EMT factors and cancer metabolism. Finally, we present therapeutic opportunities involving EMT, with particular focus on cancer metabolic pathways

    A somatic mutation in the thyrotropin receptor gene in a patient with an autonomous nodule within a multinodular goiter

    Get PDF
    ABSTRACT Thyrotropin (TSH) is the prime regulator of thyroid cell growth and function and acts through the thyrotropin receptor (TSHR) located on the surface membrane of thyrocytes. Somatic heterozygous mutations that cause TSHR activation in the absence of TSH have been found in toxic adenomas and in hot nodules of multinodular goiters. Clinically and histologically heterogeneous nodules can share common gain-of-function mutations. Mutation prevalence varies greatly and is inversely related to iodine intake of the population. We report a Greek patient presenting with subclinical hyperthyroidism due to a fast-growing autonomous hyperplastic nodule in a long-standing multinodular goiter. Direct DNA sequencing showed that the hot nodule harbored a somatic heterozygous activating TSHR mutation: substitution of glutamine for leucine in the third transmembrane helix. This mutation (L512Q) was recently described in two solitary toxic adenomas. This report expands the spectrum of mutations shared by dissimilar hot nodules, supporting a common mechanism for nonautoimmune thyroid autonomy. The identification of the L512Q substitution demonstrates that gainof-function TSHR mutations are encountered in Greece, although iodine deficiency has been significantly corrected over the last three decades

    Differential Expression of MicroRNAs in Adipose Tissue after Long-Term High-Fat Diet-Induced Obesity in Mice

    Get PDF
    Obesity is a major health concern worldwide which is associated with increased risk of chronic diseases such as metabolic syndrome, cardiovascular disease and cancer. The elucidation of the molecular mechanisms involved in adipogenesis and obesogenesis is of essential importance as it could lead to the identification of novel biomarkers and therapeutic targets for the development of anti-obesity drugs. MicroRNAs (miRNAs) have been shown to play regulatory roles in several biological processes. They have become a growing research field and consist of promising pharmaceutical targets in various fields such as cancer, metabolism, etc. The present study investigated the possible implication of miRNAs in adipose tissue during the development of obesity using as a model the C57BLJ6 mice fed a high-fat diet

    Intensification of insulin therapy in patients with type 2 diabetes: a retrospective, non- interventional cohort study of patients treated with insulin glargine or biphasic human insulin in daily clinical practice

    No full text
    Background: The aim of this study is to compare the efficacy of intensification of insulin treatment with insulin glargine and biphasic human insulin in patients with type 2 diabetes on concomitant therapy with oral antidiabetic drugs (OAD) in daily clinical practice. Methods: A retrospective multicentre parallel two-arm study included 301 patients with type 2 diabetes already on treatment with biphasic human insulin twice daily (bd) in combination with OAD. Data were collected retrospectively from 142 patients who had been switched from biphasic human insulin to insulin glargine in a period of 6-12 months prior to their inclusion (active group) and compared to data collected retrospectively from 159 patients who continued treatment with biphasic human insulin bd for the same time period (control group). Our primary objective was to examine the efficacy of the two treatments, assessed as change in HbA1c. Secondary objectives were to examine for changes in fasting blood glucose (FBG), body weight, treatment with OAD or fast-acting insulin and safety, by assessing the frequency and severity of hypoglycaemic episodes. Results: At the end of the study there was a significant reduction in HbA1c in both arms. The least squares (LS) mean [(95% confidence intervals (CI)] reduction in HbA1c was -1.13 (-0.96 to -1.30)% in the active and -0.59 (-0.41to -0.77)% in the control group [LS mean treatment difference 0.53 (0.31-0.76)%, p &lt; 0.001]. Similarly, fasting blood glucose declined significantly in both arms. The LS mean decline in FBG was -47.02 (-37.89 to -56.14) mg/dl in the active and -19.73 (-11.57 to -27.89) mg/dl in the control group [LS mean treatment difference 27.85 (15.74-39.95) mg/dl, p &lt; 0.001]. No significant difference in hypoglycaemic episodes and in body weight was found. In the active group, more patients received rapid-acting pre-meal insulin and used insulin secretagogues drugs. Conclusions: Glargine alone or in combination with fast acting insulin is more effective in reducing glycaemia than biphasic human insulin alone or in combination with fast acting insulin in patients with type 2 diabetes without increase in hypoglycaemic episodes or body weight

    Simvastatin activates Keap1/Nrf2 signaling in rat liver

    No full text
    Some of the statins’ pleiotropic actions have been attributed to their antioxidant activity. The Nrf2 transcription factor controls the expression of a number of protective genes in response to oxidative stress. In the present study, wistar rats, primary hepatocytes as well as ST2 cells, were employed to explore the potential role of Nrf2 in mediating the reported antioxidant effects of statins. Simvastatin triggered nuclear translocation of Nrf2 in rat liver and in primary rat hepatocytes in a mevalonate-dependent and cholesterol-independent way. In liver, nuclear extracts from simvastatin-treated rats, the DNA-binding activity of Nrf2, was significantly increased and the mRNA of two known targets of Nrf2 (HO-1 and GPX2) was induced. In ST2 cells stably transfected with constructs bearing Nrf2-binding site (antioxidant responsive element), simvastatin enhanced Nrf2-mediated transcriptional activity in a mevalonate-dependent and cholesterol-independent fashion. In conclusion, activation of Keap1/Nrf2 signaling pathway by simvastatin might provide effective protection of the cell from the deleterious effects of oxidative stress
    corecore