68 research outputs found

    Re-imagining a Queer Indigenous Past: Affective Archives and Minor Gestures in the SĂĄmi Documentary SparrooabbĂĄn

    Get PDF
    This article examines the possibilities for re-imagining a queer indigenous past in Sparrooabbán (Me and My Little Sister, Suvi West, 2016)—the first feature-length documentary film that discusses non-heterosexuality in Sámi communities. We explore how the film queers the gákti, the traditional Sámi dress; how it uses elements other than verbal expression to mark queer traces in Sápmi; and how spirituality and faith create a (dis)connection to a Two-Spirit past and present. We argue that the documentary produces a series of minor transformative gestures to create a queer Sámi archive of affect when there is no conventional archival knowledge of gender and sexual diversity pre–settler colonialism

    Show yourself’: Indigenous ethics, Sámi cosmologies and decolonial queer pedagogies of Frozen 2

    Get PDF
    In this article, we examine the immensely popular animated Disney film Frozen 2 (2019) through its potential as decolonial queer pedagogy. Drawing on Indigenous educational studies, queer and feminist Indigenous theories, and research on affect and trauma, we ask how the film popularizes Sámi nature-based cosmologies, addresses and attempts to repair the cross-generational transmission of settler colonial trauma, and presents a complex view of gender and human and non-human relations. Unlike in its predecessor Frozen (2013), in Frozen 2 Disney involved Sámi consultants in the production process, and the film was dubbed in North Sámi language. We interrogate Frozen 2's production process as well as its narrative and aesthetics, proposing that it allows its viewers – children and adults, Indigenous and non-Indigenous alike – to engage with and learn about Indigenous ethics, Sámi cosmologies, and more-than-human understandings of gender and sexuality in respectful and easily approachable ways

    Guest editorial

    Get PDF

    What else can a crush become: working with arts-methods to address sexual harassment in pre-teen romantic relationship cultures

    Get PDF
    This article focuses on a study in which feminist new materialist and arts-based methodologies were employed to explore how three girls address their experiences of sexual harassment as part of ‘crushes’ with boys in fourth and fifth grade. The study stems from longitudinal research on how Finnish children from pre-school to pre-teen years are caught up in entanglements of power in the formation of romantic relationship cultures. Such entanglements often escape articulation and are therefore difficult to study using more traditional research methods. During the arts-based process, the girls began to negotiate consent and self-determination in new ways through collecting, crafting, and making a booklet and a YouTube video. Conceptualising the changes as minor gestures [Manning, Erin. 2016. The Minor Gesture. Durham, NC: Duke University Press] that gradually transform girls’ somatic archives [Paasonen, Susanna. 2013. “Grains of Resonance: Affect, Pornography and Visual Sensation.” Somatechnics 3 (2): 351–368. doi:10.3366/soma.2013.0102], we argue that arts-methods can empower children to relate differently to each other, refuse harassment and assert their desires

    First climatology of polar mesospheric clouds from GOMOS/ENVISAT stellar occultation instrument

    Get PDF
    GOMOS (Global Ozone Monitoring by Occultation of Stars), on board the European platform ENVISAT launched in 2002, is a stellar occultation instrument combining four spectrometers and two fast photometers which measure light at 1 kHz sampling rate in the two visible channels 470–520 nm and 650–700 nm. On the day side, GOMOS does not measure only the light from the star, but also the solar light scattered by the atmospheric molecules. In the summer polar days, Polar Mesospheric Clouds (PMC) are clearly detected using the photometers signals, as the solar light scattered by the cloud particles in the instrument field of view. The sun-synchronous orbit of ENVISAT allows observing PMC in both hemispheres and the stellar occultation technique ensures a very good geometrical registration. Four years of data, from 2002 to 2006, are analyzed up to now. GOMOS data set consists of approximately 10 000 cloud observations all over the eight PMC seasons studied. The first climatology obtained by the analysis of this data set is presented, focusing on the seasonal and latitudinal coverage, represented by global maps. GOMOS photometers allow a very sensitive PMC detection, showing a frequency of occurrence of 100% in polar regions during the middle of the PMC season. According to this work mesospheric clouds seem to be more frequent in the Northern Hemisphere than in the Southern Hemisphere. The PMC altitude distribution was also calculated. The obtained median values are 82.7 km in the North and 83.2 km in the South

    The Roles of Vertical Advection and Eddy Diffusion in the Equatorial Mesospheric Semi-Annual Oscillation (MSAO)

    Get PDF
    Observations of the mesospheric semi-annual oscillation (MSAO) in the equatorial region have been reported dating back several decades. Seasonal variations in both species densities and airglow emissions are well documented. The extensive observations available offer an excellent case study for comparison with model simulations. A broad range of MSAO measurements is summarised with emphasis on the 80-100 km region. The objective here is not to address directly the complicated driving forces of the MSAO, but rather to employ a combination of observations and model simulations to estimate the limits of some of the underlying dynamical processes. Photochemical model simulations are included for near-equinox and near-solstice conditions, the two times with notable differences in the observed MSAO parameters. Diurnal tides are incorporated in the model to facilitate comparisons of observations made at different local times. The roles of water vapour as the driver species and ozone as the response species are examined to test for consistency between the model results and observations. The simulations suggest the interactions between vertical eddy diffusion and background vertical advection play a significant role in the MSAO phenomenon. Further, the simulations imply there are rigid limits on vertical advection rates and eddy diffusion rates. For August at the Equator, 90 km altitude, the derived eddy diffusion rate is approximately 1 x 106 cm2 s-1 and the vertical advection is upwards at 0.8 cm s-1. For April the corresponding values are 4 x 105 cm2 s-1 and 0.1 cm s-1. These results from the current 1-D model simulations will need to be verified by a full 3-D simulation. Exactly how vertical advection and eddy diffusion are related to gravity wave momentum as discussed by Dunkerton (1982) three decades ago remains to be addressed

    Long-term clinical and radiographic outcomes and patient satisfaction after adult spinal deformity correction

    Get PDF
    Background and Aims: Adult spinal deformity surgery has increased with the aging population and modern surgical approaches, although it has high complication and reoperation rates. The permanence of radiographic correction, mechanical complications, predictive factors for poor patient-reported outcomes, and patient satisfaction were analyzed. Material and Methods: A total of 79 adult patients were retrospectively analyzed at baseline and 1-9 years after adult spinal deformity correction between 2007 and 2016. Patient-reported outcomes (Oswestry Disability Index, visual analog scale, and Scoliosis Research Society-30 scores), changes in radiographic alignment, indications for reoperation, predictors of poor outcomes according to the Oswestry Disability Index and Scoliosis Research Society-30 scores, and patient satisfaction with management were studied. Results: Oswestry Disability Index and visual analog scale scores (p = 0.001), radiographic correction of thoracic kyphosis, lumbar lordosis, and pelvic retroversion (pPeer reviewe

    Comparison and synergy of stratospheric ozone measurements by satellite limb sounders and the ground-based microwave radiometer SOMORA

    Get PDF
    International audienceStratospheric O3 profiles obtained by the satellite limb sounders Aura/MLS, ENVISAT/MIPAS, ENVISAT/GOMOS, SAGE-II, SAGE-III, UARS/HALOE are compared to coincident O3 profiles of the ground-based microwave radiometer SOMORA in Switzerland. Data from the various measurement techniques are within 10% at altitudes below 45 km. At altitudes 45?60 km, the relative O3 differences are within a range of 50% Larger deviations at upper altitudes are attributed to larger relative measurement errors caused by lower O3 concentrations. The spatiotemporal characteristics of the O3 differences (satellite ? ground station) are investigated by analyzing about 5000 coincident profile pairs of Aura/MLS (retrieval version 1.5) and SOMORA. The probability density function of the O3 differences is represented by a Gaussian normal distribution (except for profile pairs around the stratopause at noon). The dependence of the O3 differences on the horizontal distance between the sounding volumes of Aura/MLS and SOMORA is derived. While the mean bias (Aura/MLS ? SOMORA) is constant with increasing horizontal distance (up to 800 km), the standard deviation of the O3 differences increases from around 8 to 12% in the mid-stratosphere. Geographical maps yield azimuthal dependences and horizontal gradients of the O3 difference field around the SOMORA ground station. Coherent oscillations of O3 are present in the time series of Aura/MLS and SOMORA (e.g., due to traveling planetary waves). Ground- and space-based measurements often complement one another. We introduce the double differencing technique which allows both the cross-validation of two satellites by means of a ground station and the cross-validation of distant ground stations by means of one satellite. Temporal atmospheric noise in the geographical ozone map over Payerne is significantly reduced by combination of the data from SOMORA and Aura/MLS. These analyses illustrate the synergy between ground-based and space-based measurements

    Relative drifts and biases between six ozone limb satellite measurements from the last decade

    Get PDF
    As part of European Space Agency’s (ESA) climate change initiative, high vertical resolution ozone profiles from three instruments all aboard ESA’s Envisat (GOMOS, MIPAS, SCIAMACHY) and ESA’s third party missions (OSIRIS, SMR, ACE-FTS) are to be combined in order to create an essential climate variable data record for the last decade. A prerequisite before combining data is the examination of differences and drifts between the data sets. In this paper, we present a detailed analysis of ozone profile differences based on pairwise collocated measurements, including the evolution of the differences with time. Such a diagnosis is helpful to identify strengths and weaknesses of each data set that may vary in time and introduce uncertainties in long-term trend estimates. The analysis reveals that the relative drift between the sensors is not statistically significant for most pairs of instruments. The relative drift values can be used to estimate the added uncertainty in physical trends. The added drift uncertainty is estimated at about 3% decade−1^{-1} (1σ). Larger differences and variability in the differences are found in the lowermost stratosphere (below 20 km) and in the mesosphere

    Relative drifts and biases between six ozone limb satellite measurements from the last decade

    Get PDF
    As part of European Space Agency’s (ESA) climate change initiative, high vertical resolution ozone profiles from three instruments all aboard ESA’s Envisat (GOMOS, MIPAS, SCIAMACHY) and ESA’s third party missions (OSIRIS, SMR, ACE-FTS) are to be combined in order to create an essential climate variable data record for the last decade. A prerequisite before combining data is the examination of differences and drifts between the data sets. In this paper, we present a detailed analysis of ozone profile differences based on pairwise collocated measurements, including the evolution of the differences with time. Such a diagnosis is helpful to identify strengths and weaknesses of each data set that may vary in time and introduce uncertainties in long-term trend estimates. The analysis reveals that the relative drift between the sensors is not statistically significant for most pairs of instruments. The relative drift values can be used to estimate the added uncertainty in physical trends. The added drift uncertainty is estimated at about 3% decade−1^{-1} (1σ). Larger differences and variability in the differences are found in the lowermost stratosphere (below 20 km) and in the mesosphere
    • 

    corecore