70 research outputs found

    Early Treatment with Methylprednisolone Pulse Therapy Combined with Tonsillectomy for Heavy Proteinuric Henoch-Schönlein Purpura Nephritis in Children

    Get PDF
    Background: There is no clear consensus as to which patients with Henoch-Schönlein purpura nephritis (HSPN) at risk of a poor outcome should be treated and what therapeutic regimen should be used. Methods: Nine children with heavy proteinuric HSPN received prompt initiation of methylprednisolone pulse therapy (MPT) combined with tonsillectomy in a prospective study. Results: At presentation, the mean values for the patients’ urine protein excretion (early-morning urinary protein/creatinine ratio), serum IgA, activity index (AI), and chronicity index (CI) were 5.0 ± 5.6 g/g Cr, 135.6 ± 56.5 mg/dl, 4.0 ± 0.7, and 1.7 ± 1.3, respectively. At the second biopsy, conducted approximately 24 months after initiation of therapy, the patients’ serum albumin had significantly increased (4.4 ± 0.2, p Conclusions: Early treatment with MPT combined with tonsillectomy is effective in ameliorating the histopathological progression and improving the clinical course of children with heavy proteinuric HSPN

    Unveiling the orbital-selective electronic band reconstruction through the structural phase transition in TaTe2_2

    Full text link
    Tantalum ditelluride TaTe2_2 belongs to the family of layered transition metal dichalcogenides but exhibits a unique structural phase transition at around 170 K that accompanies the rearrangement of the Ta atomic network from a "ribbon chain" to a "butterfly-like" pattern. While multiple mechanisms including Fermi surface nesting and chemical bonding instabilities have been intensively discussed, the origin of this transition remains elusive. Here we investigate the electronic structure of single-crystalline TaTe2_2 with a particular focus on its modifications through the phase transition, by employing core-level and angle-resolved photoemission spectroscopy combined with first-principles calculations. Temperature-dependent core-level spectroscopy demonstrates a splitting of the Ta 4f4f core-level spectra through the phase transition indicative of the Ta-dominated electronic state reconstruction. Low-energy electronic state measurements further reveal an unusual kink-like band reconstruction occurring at the Brillouin zone boundary, which cannot be explained by Fermi surface nesting or band folding effects. On the basis of the orbital-projected band calculations, this band reconstruction is mainly attributed to the modifications of specific Ta 5d5d states, namely the dXYd_{XY} orbitals (the ones elongating along the ribbon chains) at the center Ta sites of the ribbon chains. The present results highlight the strong orbital-dependent electronic state reconstruction through the phase transition in this system and provide fundamental insights towards understanding complex electron-lattice-bond coupled phenomena.Comment: 21 pages, 5 figure

    Protocol for Obtaining Mouse iPS-RPE

    Get PDF
    Purpose To establish a novel protocol for differentiation of retinal pigment epithelium (RPE) with high purity from mouse induced pluripotent stem cells (iPSC). Methods Retinal progenitor cells were differentiated from mouse iPSC, and RPE differentiation was then enhanced by activation of the Wnt signaling pathway, inhibition of the fibroblast growth factor signaling pathway, and inhibition of the Rho-associated, coiled-coil containing protein kinase signaling pathway. Expanded pigmented cells were purified by plate adhesion after Accutase® treatment. Enriched cells were cultured until they developed a cobblestone appearance with cuboidal shape. The characteristics of iPS-RPE were confirmed by gene expression, immunocytochemistry, and electron microscopy. Functions and immunologic features of the iPS-RPE were also evaluated. Results We obtained iPS-RPE at high purity (approximately 98%). The iPS-RPE showed apical-basal polarity and cellular structure characteristic of RPE. Expression levels of several RPE markers were lower than those of freshly isolated mouse RPE but comparable to those of primary cultured RPE. The iPS-RPE could form tight junctions, phagocytose photoreceptor outer segments, express immune antigens, and suppress lymphocyte proliferation. Conclusion We successfully developed a differentiation/purification protocol to obtain mouse iPS-RPE. The mouse iPS-RPE can serve as an attractive tool for functional and morphological studies of RPE

    Active Learning Models in Science Classes

    Get PDF
    研究の第1年次に当たる本年は,理科におけるアクティブラーニング型授業の構造化に向けて,内化と外化の往還を取り入れた授業デザインとその実践に取り組み,具体的実践の蓄積を行った。小学校,中学校,高等学校それぞれで実践を行ったところ,1)学習内容の定着が図られる,2)発展的な内容や未習内容を生徒が主体的に理解することが可能である,3)協働的な学びの場面を加えることで理解の深化が図られる,4)どのような課題に取り組ませるのかといった課題の設定がカギである,5)アクティブラーニングであるか否かを判断するための要素を明らかにする必要がある,などの一定の成果と課題が明らかになった。The purpose of this study is to create active learning models in science classes. As the first-year research, the authors designed the classes which would include a round trip between externalization and internalization, and put them into practice. The designed models were adopted in elementary, junior high and senior high school classes. What have become clear are as the following; 1) Students’ acquisition of the learning contents can be promoted, 2) Students can understand advanced contents proactively, 3) Students’ learning can be deepened by adding collaborative activities, 4) The success or failure to active learning may depend on the quality of the tasks which students work on, 5) It is necessary to clarify the factors to determine active learning

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    The Role of Science Education in the Construction of a Knowledge-Based Society

    Get PDF
    知識基盤社会における理科の役割は,科学的に探究する活動を通して得られた結果(情報)を活用し,それらの情報から導き出した自らの考えを表現する能力を高めることである。これまでに明らかになったことは,授業者が実験結果に対して関連付けることができる事項を明確にし,分析・解釈する視点を与えることが重要であるということである。今年度は,小学校,中学校,高等学校の理科で,パフォーマンス課題を取り入れた探究活動を行い,多くの授業者が共有できる方向性を考えた。実践の結果,以下のことが明らかになった。1)小集団での話し合いの質を高めるためには,話し合いの目的と方法を明示することが重要であること。2)そのために授業者の関わり方を引き続き検討する必要があること。3)パフォーマンス課題の設計には授業者がよりメタ認知を働かせることが必要であること。今後は,このような実践経験を広く共有すべきであると考えている。Science education should help students to utilize results and information through activities, to investigate scientifically, and to develop their abilities to express ideas they have derived from those results. We have learned that it is important for instructors to clarify which results from experiments relate to each other and to give students some clear perspectives for analyzing and interpreting them. This academic year, we investigated performance tasks at elementary, junior high, and senior high school levels. Through our research we have learned that to improve the quality of discussion in small groups, it is important to make the purpose and method clear. We also showed that instructors should monitor how they engage with students in the course of discussion and that they need to function meta-cognitive abilities more to design performance tasks

    The Quiescent Intracluster Medium in the Core of the Perseus Cluster

    Get PDF
    Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. It can enable new insights into mechanical energy injection by the central supermassive black hole and the use of hydrostatic equilibrium for the determination of cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50 million K diffuse hot plasma filling its gravitational potential well. The Active Galactic Nucleus of the central galaxy NGC1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These likely induce motions in the intracluster medium and heat the inner gas preventing runaway radiative cooling; a process known as Active Galactic Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus cluster core, which reveal a remarkably quiescent atmosphere where the gas has a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s is found across the 60 kpc image of the cluster core. Turbulent pressure support in the gas is 4% or less of the thermodynamic pressure, with large scale shear at most doubling that estimate. We infer that total cluster masses determined from hydrostatic equilibrium in the central regions need little correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July

    Hitomi (ASTRO-H) X-ray Astronomy Satellite

    Get PDF
    The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E  >  2  keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month
    corecore