75 research outputs found

    Predicting the course of hematopoietic neoplasm through oral bacterial examination

    Get PDF
    Many medical institutions have recently conducted studies on the relationship between patients with hematopoietic neoplasms and oral cavity. Statistical analysis of the bacterial populations was performed in this study to identify how oral microflora and health conditions (e.g., dental caries and periodontal diseases) affect the prognosis of patients with hematopoietic neoplasms. Patients undergoing inpatient treatment from January to December 2020 at the Department of Hematology at Showa University, Japan, who required perioperative oral management were included in the study. The oral health of the patients was examined at the initial dental visit, and oral bacterial samples were collected from the tongue, buccal mucosa, and palate of 47 patients who consented to participate after receiving an explanation about the study. Statistical analyses performed after dividing the subjects into two groups following the treatment course showed that Stenotrophomonas maltophilia and Gemella sanguinis were significantly more common in the poor-course group. However, no significant difference in bacterial examination results was noted among the four groups (myeloid neoplasm chemotherapy, myeloid neoplasm hematopoietic stem cell transplantation (HSCT), lymphoid neoplasm chemotherapy, and lymphoid neoplasm HSCT groups) classified based on disease and treatment method. The detection rate of bacteria potentially causing infectious diseases at the initial dental examination tended to be higher in this study in the poor-course group. The findings of the current study suggest that early detection of pathogenic bacteria after commencing hematology treatment could predict the poor-course that may lead to mortality or severe infections

    CD153/CD30 signaling promotes age-dependent tertiary lymphoid tissue expansion and kidney injury

    Get PDF
    高齢者腎臓病を悪化させる原因細胞・分子の同定に成功. 京都大学プレスリリース. 2021-11-30.A new drug target for kidney disease. 京都大学プレスリリース. 2021-11-30.Tertiary lymphoid tissues (TLTs) facilitate local T- and B-cell interactions in chronically inflamed organs. However, the cells and molecular pathways that govern TLT formation are poorly defined. Here we identify TNF superfamily CD153-CD30 signaling between two unique age-dependent lymphocyte subpopulations, CD153⁺PD-1⁺CD4⁺ senescence-associated T (SAT) cells and CD30+T-bet+ age-associated B cells (ABCs), as a driver for TLT expansion. SAT cells, which produced ABC-inducing factors IL21 and IFNγ, and ABCs progressively accumulated within TLTs in aged kidneys after injury. Notably, in kidney injury models, CD153 or CD30 deficiency impaired functional SAT cell induction, which resulted in reduced ABC numbers and attenuated TLT formation with improved inflammation, fibrosis and renal function. Attenuated TLT formation after transplantation of CD153-deficient bone marrow further supported the importance of CD153 in immune cells. Clonal analysis revealed that SAT cells and ABCs in the kidneys arose from both local differentiation and recruitment from the spleen. In the synovium of aged rheumatoid arthritis patients, T peripheral helper/T follicular helper cells and ABCs also expressed CD153 and CD30, respectively. Together, our data reveal a previously unappreciated function of CD153-CD30 signaling in TLT formation and propose targeting CD153-CD30 signaling pathway as a therapeutic target for slowing kidney disease progression

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Laugier-Hunziker-Baran Syndrome.

    No full text

    New Ceramide from Marine Sponge Haliclona koremella

    No full text

    MDM2 regulates a novel form of incomplete neoplastic transformation of Theileria parva infected lymphocytes

    Get PDF
    Our efforts are concerned with identifying features of incomplete malignant transformation caused by non viral pathogens. Theileria parva (T. parva) is a tick-transmitted protozoan parasite that can cause a fatal lymphoproliferative disease in cattle. The T. parva-infected lymphocytes display a transformed phenotype and proliferate in culture media like the other tumor cells, however those cells will return to normal after antiprotozoal treatment reflecting the incomplete nature of transformation. To identify signaling pathways involved in this form of transformation of T. parva-infected cells, we screened a library of anticancer compounds. Among these, TIBC, a specific inhibitor of MDM2, markedly inhibited proliferation of T. parva-infected lymphocytes and promoted apoptosis. Therefore we analyzed MDM2 function in T. parva-infected cells. Several T. parva-infected cell lines showed increased expression level of MDM2 with alternatively spliced isoforms compared to the lymphoma cells or ConA blasts. In addition, buparvaquone affected MDM2 expression in T. parva transformed cells. Moreover, p53 protein accumulation and function were impaired in T. parva-infected cells after cisplatin induced DNA damage despite the increased p53 transcription level. Finally, the treatment of T. parva-infected cells with boronic-chalcone derivatives TIBC restored p53 protein accumulation and induced Bax expression. These results suggest that the overexpression of MDM2 is closely linked to the inhibition of p53-dependent apoptosis of T. parva-infected lymphocytes. Aberrant expression of host lymphocyte MDM2 induced by cytoplasmic existence of T. parva, directly and/or indirectly, is associated with aspects of this type of transformation of T. parva-infected lymphocytes. This form of transformation shares features of oncogene induced malignant phenotype acquisition
    corecore