65 research outputs found

    A rational approach to cancer therapy

    Get PDF
    A report on the 20th Annual Lorne Cancer Conference, Lorne, Australia, 14-16 February 2008

    When Is β€œType I” Ovarian Cancer Not β€œType I”? Indications of an Out-Dated Dichotomy

    Get PDF
    The dualistic classification of epithelial ovarian cancer (EOC) into β€œtype I” and β€œtype II” is widely applied in the research setting; it is used as a convenient way of conceptualizing different mechanisms of tumorigenesis. However, this classification conflicts with recent molecular insights of the etiology of EOC. Molecular and cell of origin studies indicate that while type II tumors could be classed together, type I tumors are not homogenous, even within the histological types, and can have poor clinical outcomes. Type II high grade serous carcinoma and type I low grade serous carcinomas best fit the description of the dualistic model, with different precursors, and distinct molecular profiles. However, endometriosis-associated cancers should be considered a separate group, without assuming an indolent course or type I genetic profiles. Furthermore, the very clear differences between mucinous ovarian carcinomas and other type I tumors, including an uncertain origin, and heterogeneous mutational spectrum and clinical behavior, indicate a non-type I classification for this entity. The impression that only type II carcinomas are aggressive, have poor prognosis, and carry TP53 mutations is an unhelpful misinterpretation of the dualistic classification. In this review, we revisit the history of EOC classification, and discuss the misunderstanding of the dualistic model by comparing the clinical and molecular heterogeneity of EOC types. We also emphasize that all EOC research, both basic and clinical, should consider the subtypes as different diseases beyond the type I/type II model, and base novel therapies on the molecular characteristics of each tumor

    Chemokine (C-C motif) receptor 7 (CCR7) associates with the tumour immune microenvironment but not progression in invasive breast carcinoma

    Get PDF
    Some previous studies have reported that the chemokine (C-C motif) receptor 7 (CCR7) plays a role in breast cancer, is associated with lymph node metastasis and drives the site of distant metastasis. However, the impact of its expression on patient outcome and its association with tumour infiltrating inflammatory cells remain to be validated. We evaluated CCR7 protein expression by immunohistochemistry in a large well characterized cohort (n = 866) of early invasive primary breast cancers. CCR7 was expressed in the cytoplasm and membrane of tumour cells. We observed a weak positive association of high CCR7 expression when in either cellular component, but not both together, with axillary lymph node stage 3 tumours (p = 0.043). Logistic regression analysis of lymph node stage revealed no independent predictive value for CCR7 expression. CCR7 expression was higher in HER2 positive tumours (p = 0.03) and associated with positive CD68+ FOXP3+ tumour infiltrating cells. CCR7 staining was negatively associated with CD3+ cells. There was no significant association of CCR7 expression with breast cancer recurrence or survival. We conclude that while CCR7 is not a useful biomarker for predicting lymph node metastasis, it may reflect altered intra- and inter-cellular signalling related to the immune microenvironment. The subcellular localization of CCR7 appears to affect the nature of these interactions

    The clinical and biological significance of HER2 over-expression in breast ductal carcinoma in situ: a large study from a single institution

    Get PDF
    Β© 2019, Cancer Research UK. Background: Previous studies have reported up to 50% of ductal carcinoma in situ (DCIS), is HER2 positive, but the frequency of HER2-positive invasive breast cancer (IBC) is lower. The aim of this study is to characterise HER2 status in DCIS and assess its prognostic value. Methods: HER2 status was evaluated in a large series of DCIS (n = 868), including pure DCIS and DCIS associated with IBC, prepared as tissue microarrays (TMAs). HER2 status was assessed using immunohistochemistry (IHC) and chromogenic in situ hybridisation (CISH). Results: In pure DCIS, HER2 protein was over-expressed in 9% of DCIS (3+), whereas 15% were HER2 equivocal (2+). Using CISH, the final HER2 status was positive in 20%. In mixed DCIS, HER2 amplification of the DCIS component was detected in 15% with amplification in the invasive component of only 12%. HER2-positive DCIS was associated with features of aggressiveness (p < 0.0001) and more frequent local recurrence (p = 0.03). On multivariate analysis, combined HER2+/Ki67+ profile was an independent predictor of local recurrence (p = 0.006). Conclusions: The frequency of HER2 positivity in DCIS is comparable to IBC- and HER2-positive DCIS is associated with features of poor prognosis. The majority of HER2 over-expression in DCIS is driven by gene amplification

    The prognostic significance of lysosomal protective protein (Cathepsin A) in breast ductal carcinoma in situ

    Get PDF
    Background: Cathepsin A (CTSA) is a key regulatory enzyme for galactoside metabolism. Additionally, it has a distinct proteolytic activity and plays a role in tumour progression. CTSA is differentially expressed at the mRNA level between breast ductal carcinoma in situ (DCIS) and invasive breast carcinoma (IBC). In this study, we aimed to characterise CTSA protein expression in DCIS and evaluate its prognostic significance. Methods: A large cohort of DCIS (n=776 for pure DCIS and n=239 for DCIS associated with IBC (DCIS/IBC)) prepared as tissue microarray was immunohistochemically stained for CTSA. Results: High CTSA expression was observed in 48% of pure DCIS. High expression was associated with features of poor DCIS prognosis including younger age at diagnosis (less than 50 years), higher nuclear grade, hormone receptor negativity, HER2 positivity, high proliferative index and high hypoxia inducible factor 1 alpha expression. High CTSA expression was associated with shorter recurrence free interval (RFI) (p=0.0001). In multivariate survival analysis for patients treated with breast conserving surgery, CTSA was an independent predictor of shorter RFI (p=0.015). DCIS associated with IBC showed higher CTSA expression than pure DCIS (p=0.04). In the DCIS/IBC cohort, CTSA expression was higher in the invasive component than DCIS component (p less than 0.0001). Conclusion: CTSA is not only associated with aggressive behaviour and poor outcome in DCIS but also a potential marker to predict co-existing invasion in DCIS

    The prognostic significance of immune microenvironment in breast ductal carcinoma in situ

    Get PDF
    BackgroundThe role of different subtypes of tumour infiltrating lymphocytes (TILs) in breast ductal carcinoma in situ (DCIS) is still poorly defined. This study aimed to assess the prognostic significance of B and T lymphocytes and immune checkpoint proteins expression in DCIS.MethodsA well characterised DCIS cohort (n = 700) with long-term follow-up comprising pure DCIS (n = 508) and DCIS mixed with invasive carcinoma (IBC; n = 192) were stained immunohistochemically for CD20, CD3, CD4, CD8, FOXP3, PD1 and PDL1. Copy number variation and TP53 mutation status were assessed in a subset of cases (n = 58).ResultsCD3+ lymphocytes were the predominant cell subtype in the pure DCIS cohort, while FOXP3 showed the lowest levels. PDL1 expression was mainly seen in the stromal TILs. Higher abundance of TILs subtypes was associated with higher tumour grade, hormone receptor negativity and HER2 positivity. Mutant TP53 variants were associated with higher levels of stromal CD3+, CD4+ and FOXP3+ cells. DCIS coexisting with invasive carcinoma harboured denser stromal infiltrates of all immune cells and checkpoint proteins apart from CD4+ cells. Stromal PD1 was the most differentially expressed protein between DCIS and invasive carcinoma (Z = 5.8, p

    MicroRNA Genes and Their Target 3β€²-Untranslated Regions Are Infrequently Somatically Mutated in Ovarian Cancers

    Get PDF
    MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3β€²-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3β€²-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3β€²-untranslated regions are thus uncommon in ovarian cancer

    Analysis of the Mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>MAP2K4 </it>is a putative tumor and metastasis suppressor gene frequently found to be deleted in various cancer types. We aimed to conduct a comprehensive analysis of this gene to assess its involvement in ovarian cancer.</p> <p>Methods</p> <p>We screened for mutations in <it>MAP2K4 </it>using High Resolution Melt analysis of 149 primary ovarian tumors and methylation at the promoter using Methylation-Specific Single-Stranded Conformation Polymorphism analysis of 39 tumors. We also considered the clinical impact of changes in <it>MAP2K4 </it>using publicly available expression and copy number array data. Finally, we used siRNA to measure the effect of reducing <it>MAP2K4 </it>expression in cell lines.</p> <p>Results</p> <p>In addition to 4 previously detected homozygous deletions, we identified a homozygous 16 bp truncating deletion and a heterozygous 4 bp deletion, each in one ovarian tumor. No promoter methylation was detected. The frequency of <it>MAP2K4 </it>homozygous inactivation was 5.6% overall, and 9.8% in high-grade serous cases. Hemizygous deletion of <it>MAP2K4 </it>was observed in 38% of samples. There were significant correlations of copy number and expression in three microarray data sets. There was a significant correlation between <it>MAP2K4 </it>expression and overall survival in one expression array data set, but this was not confirmed in an independent set. Treatment of JAM and HOSE6.3 cell lines with <it>MAP2K4 </it>siRNA showed some reduction in proliferation.</p> <p>Conclusions</p> <p><it>MAP2K4 </it>is targeted by genetic inactivation in ovarian cancer and restricted to high grade serous and endometrioid carcinomas in our cohort.</p
    • …
    corecore