6 research outputs found

    The involvement of phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and MYPT1 isoform expression in NO/cGMP mediated differential vasoregulation of cerebral arteries compared to systemic arteries

    No full text
    AimConstitutive release of NO blunts intrinsic and stimulated contractile activity in cerebral arteries (CA). Here, we explored whether phosphorylation and expression levels of the PKG-sensitive, leucine zipper positive (LZ(+)) splice variants of the regulatory subunit of myosin phosphatase (MYPT1) are involved and whether its expression is associated with higher cGMP sensitivity. MethodsVascular contractility was investigated by wire myography. Phosphorylation of MYPT1 was determined by Western blotting. ResultsConstitutive phosphorylation of MYPT1-T696 and T853 was lower and that of S695 and S668 was higher in cerebral arteries from the circulus arteriosus (CA-w) than in femoral arteries (FA), while total MYPT1 expression was not different. In CA-w but not in FA, L-NAME lowered phosphorylation of S695/S668 and increased phosphorylation of T696/T853 and of MLC20-S19, plus basal tone. The increase in basal tone was attenuated in CA-w and basilar arteries (BA) from heterozygous MYPT1-T696A/+ mice. Compared to FA, expression of the LZ(+)-isoform was 2-fold higher in CA-w coincident with a higher sensitivity to DEA-NONOate, cinaciguat and Y27632 in BA and 8-Br-cGMP (1 mol/L) in pre-constricted (pCa 6.1) -toxin permeabilized CAs. In contrast, 6-Bnz-cAMP (10 mol/L) relaxed BA and FA similarly by 80%. ConclusionOur results indicate that (i) regulation of the intrinsic contractile activity in CA involves phosphorylation of MYPT1 at T696 and S695/S668, (ii) the higher NO/cGMP/PKG sensitivity of CAs can be ascribed to the higher expression level of the LZ(+)-MYPT1 isoform and (iii) relaxation by cAMP/PKA pathway is less dependent on the expression level of the LZ(+) splice variants of MYPT1

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
    corecore