1,717 research outputs found

    Transitions in coral reef accretion rates linked to intrinsic ecological shifts on turbid-zone nearshore reefs

    Get PDF
    Nearshore coral communities within turbid settings are typically perceived to have limited reef-building capacity. However, several recent studies have reported reef growth over millennial time scales within such environments and have hypothesized that depth-variable community assemblages may act as equally important controls on reef growth as they do in clear-water settings. Here, we explicitly test this idea using a newly compiled chronostratigraphic record (31 cores, 142 radiometric dates) from seven proximal (but discrete) nearshore coral reefs located along the central Great Barrier Reef (Australia). Uniquely, these reefs span distinct stages of geomorphological maturity, as reflected in their elevations below sea level. Integrated age-depth and ecological data sets indicate that contemporary coral assemblage shifts, associated with changing light availability and wave exposure as reefs shallowed, coincided with transitions in accretion rates at equivalent core depths. Reef initiation followed a regional ∼1 m drop in sea level (1200–800 calibrated yr B.P.) which would have lowered the photic floor and exposed new substrate for coral recruitment by winnowing away fine seafloor sediments. We propose that a two-way feedback mechanism exists where past growth history influences current reef morphology and ecology, ultimately driving future reef accumulation and morphological change. These findings provide the first empirical evidence that nearshore reef growth trajectories are intrinsically driven by changes in coral community structure as reefs move toward sea level, a finding of direct significance for predicting the impacts of extrinsically driven ecological change (e.g., coral-algal phase shifts) on reef growth potential within the wider coastal zone on the Great Barrier Reef

    The Sport Concussion Assessment Tool-5 (SCAT5): Baseline Assessments in NCAA Division I Collegiate Student-Athletes

    Get PDF
    International Journal of Exercise Science 13(3): 1143-1155, 2020. The purpose of this study was to report baseline values for the SCAT5 in NCAA Division I collegiate student-athletes, while also evaluating if sex, health diagnoses, or sport type influenced baseline performance. A sample of 462 collegiate student-athletes (212 females, 250 males, (19.21±1.32 years)) completed the SCAT5 prior to the 2017-18, 2018-19 or 2019-20 athletic seasons. Descriptive statistics were reported for symptom total (22 possible), symptom severity (132 possible), orientation (5 possible), immediate memory (30 possible), concentration (5 possible), delayed recall (10 possible), total SAC score (50 possible), 3 mBESS stances (10 possible), and mBESS score (30 possible). Separate Mann-Whitney U tests were conducted to identify sex, health diagnoses (concussion history, ADD/ADHD, depression/anxiety), and sport type (contact, non-contact) differences for all SCAT5 components. Alpha level was set a priori \u3c.05. Student-athletes reported 1.96± 3.37 symptoms with a severity of 3.43±7.63, and an overall SAC score of 35.14±5.23 (orientation 4.96±0.20, immediate memory 20.18±3.40, concentration 3.60±1.14, delayed recall 6.41±1.94). Student-athletes participating in contact sports, had ADD/ADHD, or depression/anxiety reported more symptoms and at greater severity (p=\u3c.001-.01). Those with ADD/ADHD performed worse on mBESS (p=.01-.03). No sex differences were found for any SCAT5 components (p=.08-.90). This study presents reference values for the SCAT5 by sex, health diagnoses, and sport type. Healthcare professionals may utilize these normative values when individual baseline references are unavailable

    Alteration of the Canine Metabolome After a 3-Week Supplementation of Cannabidiol (CBD) Containing Treats: An Exploratory Study of Healthy Animals

    Get PDF
    Despite the increased interest and widespread use of cannabidiol (CBD) in humans and companion animals, much remains to be learned about its effects on health and physiology. Metabolomics is a useful tool to evaluate changes in the health status of animals and to analyze metabolic alterations caused by diet, disease, or other factors. Thus, the purpose of this investigation was to evaluate the impact of CBD supplementation on the canine plasma metabolome. Sixteen dogs (18.2 ± 3.4 kg BW) were utilized in a completely randomized design with treatments consisting of control and 4.5 mg CBD/kg BW/d. After 21 d of treatment, blood was collected ~2 h after treat consumption. Plasma collected from samples was analyzed using CIL/LC-MS-based untargeted metabolomics to analyze amine/phenol- and carbonyl-containing metabolites. Metabolites that differed — fold change (FC) ≥ 1.2 or ≤ 0.83 and false discovery ratio (FDR) ≤ 0.05 — between the two treatments were identified using a volcano plot. Biomarker analysis based on receiver operating characteristic (ROC) curves was performed to identify biomarker candidates (area under ROC ≥ 0.90) of the effects of CBD supplementation. Volcano plot analysis revealed that 32 amine/phenol-containing metabolites and five carbonyl-containing metabolites were differentially altered (FC ≥ 1.2 or ≤ 0.83, FDR ≤ 0.05) by CBD; these metabolites are involved in the metabolism of amino acids, glucose, vitamins, nucleotides, and hydroxycinnamic acid derivatives. Biomarker analysis identified 24 amine/phenol-containing metabolites and 1 carbonyl-containing metabolite as candidate biomarkers of the effects of CBD (area under ROC ≥ 0.90; P \u3c 0.01). Results of this study indicate that 3 weeks of 4.5 mg CBD/kg BW/d supplementation altered the canine metabolome. Additional work is warranted to investigate the physiological relevance of these changes

    Transcranial Electrical Stimulation targeting limbic cortex increases the duration of human deep sleep

    Get PDF
    Background: Researchers have proposed that impaired sleep may be a causal link in the progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Several recent findings suggest that enhancing deep sleep (N3) may improve neurological health in persons with MCI, and buffer the risk for AD. Specifically, Transcranial Electrical Stimulation (TES) of frontal brain areas, the inferred source of the Slow Oscillations (SOs) of N3 sleep, can extend N3 sleep duration and improve declarative memory for recently learned information. Recent work in our laboratory using dense array Electroencephalography (dEEG) localized the sources of SOs to anterior limbic sites – suggesting that targeting these sites with TES may be more effective for enhancing N3. Methods: For the present study, we recruited 13 healthy adults (M = 42 years) to participate in three all-night sleep EEG recordings where they received low level (0.5 mA) TES designed to target anterior limbic areas and a sham stimulation (placebo). We used a convolutional neural network, trained and tested on professionally scored EEG sleep staging, to predict sleep stages for each recording. Results: When compared to the sham session, limbic-targeted TES significantly increased the duration of N3 sleep. TES also significantly increased spectral power in the 0.5–1 Hz frequency band (relative to pre-TES epochs) in left temporoparietal and left occipital scalp regions compared to sham. Conclusion: These results suggest that even low-level TES, when specifically targeting anterior limbic sites, can increase deep (N3) sleep and thereby contribute to healthy sleep quality.Fil: Hathaway, Evan. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Morgan, Kyle. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Carson, Megan. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Shusterman, Roma. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Fernandez Corazza, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Luu, Phan. University of Oregon; Estados UnidosFil: Tucker, Don M.. University of Oregon; Estados Unido

    Performance Evaluation of Staged Bosch Process for CO2 Reduction to Produce Life Support Consumables

    Get PDF
    Utilizing carbon dioxide to produce water and hence oxygen is critical for sustained manned missions in space, and to support both NASA's cabin Atmosphere Revitalization System (ARS) and In-Situ Resource Utilization (ISRU) concepts. For long term missions beyond low Earth orbit, where resupply is significantly more difficult and costly, open loop ARS, like Sabatier, consume inputs such as hydrogen. The Bosch process, on the other hand, has the potential to achieve complete loop closure and is hence a preferred choice. However, current single stage Bosch reactor designs suffer from a large recycle penalty due to slow reaction rates and the inherent limitation in approaching thermodynamic equilibrium. Developmental efforts are seeking to improve upon the efficiency (hence reducing the recycle penalty) of current single stage Bosch reactors which employ traditional steel wool catalysts. Precision Combustion, Inc. (PCI), with support from NASA, has investigated the potential for utilizing catalysts supported over short-contact time Microlith substrates for the Bosch reaction to achieve faster reaction rates, higher conversions, and a reduced recycle flows. Proof-of-concept testing was accomplished for a staged Bosch process by splitting the chemistry in two separate reactors, first being the reverse water-gas-shift (RWGS) and the second being the carbon formation reactor (CFR) via hydrogenation and/or Boudouard. This paper presents the results from this feasibility study at various operating conditions. Additionally, results from two 70 hour durability tests for the RWGS reactor are discussed

    Focal limbic sources create the large slow oscillations of the EEG in human deep sleep

    Get PDF
    Background: Initial observations with the human electroencephalogram (EEG) have interpreted slow oscillations (SOs) of the EEG during deep sleep (N3) as reflecting widespread surface-negative traveling waves that originate in frontal regions and propagate across the neocortex. However, mapping SOs with a high-density array shows the simultaneous appearance of posterior positive voltage fields in the EEG at the time of the frontal-negative fields, with the typical inversion point (apparent source) around the temporal lobe. Methods: Overnight 256-channel EEG recordings were gathered from 10 healthy young adults. Individual head conductivity models were created using each participant's own structural MRI. Source localization of SOs during N3 was then performed. Results: Electrical source localization models confirmed that these large waves were created by focal discharges within the ventral limbic cortex, including medial temporal and caudal orbitofrontal cortex. Conclusions: Although the functional neurophysiology of deep sleep involves interactions between limbic and neocortical networks, the large EEG deflections of deep sleep are not created by distributed traveling waves in lateral neocortex but instead by relatively focal limbic discharges.Fil: Morgan, Kyle K.. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Hathaway, Evan. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Carson, Megan. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Fernandez Corazza, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Shusterman, Roma. Brain Electrophysiology Laboratory Company; Estados UnidosFil: Luu, Phan. Brain Electrophysiology Laboratory Company; Estados Unidos. University of Oregon; Estados UnidosFil: Tucker, Don M.. University of Oregon; Estados Unidos. Brain Electrophysiology Laboratory Company; Estados Unido

    The Impact of Feeding Cannabidiol (CBD) Containing Treats on Canine Response to a Noise-Induced Fear Response Test

    Get PDF
    Interest is increasing regarding use of Cannabidiol (CBD) in companion animals due to anecdotal evidence of beneficial behavioral and health effects. The purpose of this investigation was to evaluate the influence of CBD on behavioral responses to fear-inducing stimuli in dogs. Sixteen dogs (18.1 ± 0.2 kg) were utilized in a replicated 4 × 4 Latin square design experiment with treatments arranged in a 2 × 2 factorial, consisting of control, 25 mg CBD, trazodone (100 mg for 10–20 kg BW, 200 mg for 20.1–40 kg BW), and the combination of CBD and trazodone. A fireworks model of noise-induced fear was used to assess CBD effectiveness after 7 d of supplementation. Each test lasted a total of 6 min and consisted of a 3 min environmental habituation phase with no noise and a 3 min noise phase with a fireworks track. Plasma was collected 1 h before, immediately after, and 1 h following testing for cortisol analysis. Behaviors in each 3 min block were video recorded, and heart rate (HR) sensors were fitted for collection of HR and HR variability parameters. Research personnel administering treats and analyzing behavioral data were blinded as to the treatments administered. Data were tested for normality using the UNIVARIATE procedure in SAS, then differences examined using the MIXED procedure with fixed effects of treatment, period, time, and treatment x time interaction. Inactivity duration and HR increased during the first minute of the fireworks track compared with 1 min prior (P \u3c 0.001 and P = 0.011, respectively), indicating the fireworks model successfully generated a fear response. Trazodone lowered plasma cortisol (P \u3c 0.001), which was unaffected by CBD (P = 0.104) or the combination with CBD (P = 0.238). Neither CBD nor trazodone affected the duration of inactivity (P = 0.918 and 0.329, respectively). Trazodone increased time spent with tail relaxed (P = 0.001). CBD tended to increase HR (P = 0.093) and decreased the peak of low- and high-frequency bands (LF and HF, P = 0.011 and 0.022, respectively). These results do not support an anxiolytic effect of CBD in dogs given 1.4 mg CBD/kg BW/d

    Feeding Cannabidiol (CBD)-Containing Treats Did Not Affect Canine Daily Voluntary Activity

    Get PDF
    Growing public interest in the use of cannabidiol (CBD) for companion animals has amplified the need to elucidate potential impacts. The purpose of this investigation was to determine the influence of CBD on the daily activity of adult dogs. Twenty-four dogs (18.0 ± 3.4 kg, 9 months−4 years old) of various mixed breeds were utilized in a randomized complete block design with treatments targeted at 0 and 2.5 mg (LOW) and at 5.0 mg (HIGH) CBD/kg body weight (BW) per day split between two treats administered after twice-daily exercise (0700–0900 and 1,700–1,900 h). Four hours each day [1,000–1,200 h (a.m.) and 1,330–1,530 h (p.m.)] were designated as times when no people entered the kennels, with 2 h designated as Quiet time and the other 2 h as Music time, when calming music played over speakers. Quiet and Music sessions were randomly allotted to daily a.m. or p.m. times. Activity monitors were fitted to dogs\u27 collars for continuous collection of activity data. Data were collected over a 14-day baseline period to establish the activity patterns and block dogs by activity level (high or low) before randomly assigning dogs within each block to treatments. After 7 days of treatment acclimation, activity data were collected for 14 days. Data were examined for differences using the MIXED procedure in SAS including effects of treatment, day, session (Quiet or Music), time of day (a.m. or p.m.), and accompanying interactions. CBD (LOW and HIGH) did not alter the total daily activity points (P = 0.985) or activity duration (P = 0.882). CBD tended (P = 0.071) to reduce total daily scratching compared with the control. Dogs were more active in p.m. sessions than in a.m. sessions (P \u3c 0.001). During the p.m. session, dogs receiving HIGH tended (P = 0.091) to be less active than the control (CON). During the a.m. and p.m. sessions, CBD reduced scratching compared with CON (P = 0.030). CBD did not affect the activity duration during exercise periods (P = 0.143). These results indicate that, when supplemented with up to 4.5 mg CBD/kg BW/day, CBD does not impact the daily activity of adult dogs, but may exert an antipruritic effect

    Accreting coral reefs in a highly urbanized environment

    Get PDF
    Globally, many coral reefs have fallen into negative carbonate budget states, where biological erosion exceeds carbonate production. The compounding effects of urbanization and climate change have caused reductions in coral cover and shifts in community composition that may limit the ability of reefs to maintain rates of vertical accretion in line with rising sea levels. Here we report on coral reef carbonate budget surveys across seven coral reefs in Singapore, which persist under chronic turbidity and in highly disturbed environmental conditions, with less than 20% light penetration to 2 m depth. Results show that mean net carbonate budgets across Singapore’s reefs were relatively low, at 0.63 ± 0.27 kg CaCO3 m−2 yr−1 (mean ± 1 SE) with a range from − 1.56 to 1.97, compared with the mean carbonate budgets across the Indo-Pacific of 1.4 ± 0.15 kg CaCO3 m−2 yr−1, and isolated Indian Ocean reefs pre-2016 bleaching (~ 3.7 kg CaCO3 m−2 yr−1). Of the seven reefs surveyed, only one reef had a net negative, or erosional budget, due to near total loss of coral cover (\u3c 5% remaining coral). Mean gross carbonate production on Singapore’s reefs was dominated by stress-tolerant and generalist species, with low-profile morphologies, and was ~ 3 kg m−2 yr−1 lower than on reefs with equivalent coral cover elsewhere in the Indo-Pacific. While overall these reefs are maintaining and adding carbonate structure, their mean vertical accretion potential is below both current rates of sea level rise (1993–2010), and future predictions under RCP 4.5 and RCP 8.5 scenarios. This is likely to result in an increase of 0.2–0.6 m of water above Singapore’s reefs in the next 80 yr, further narrowing the depth range over which these reefs can persist

    Growth and carbonate production of crustose coralline algae on a degraded turbid reef system

    Get PDF
    Crustose coralline algae (CCA) and other encrusting calcifiers drive carbonate production on coral reefs. However, little is known about the rates of growth and calcification of these organisms within degraded turbid reef systems. Here we deployed settlement cards (N = 764) across seven reefs in Singapore for two years to examine spatio-temporal variation in encrusting community composition and CCA carbonate production. Our results showed that CCA was the dominant encrusting taxa (63.7% ± 18.3SD) across reefs. CCA carbonate production rates (0.009–0.052 g cm−2 yr−1) were less than half of those reported for most Indo-Pacific reefs, but similar to other turbid reef systems. Highest CCA carbonate production rates were observed furthest from Singapore\u27s main shipping port, due to a relative increase in CCA cover on the offshore reefs. Our results suggest that proximity to areas of high industrialisation and ship traffic may reduce the cover of encrusting calcifying organisms and CCA production rates which may have negative, long-term implications for the stabilisation of nearshore reefs in urbanised settings
    • …
    corecore