71 research outputs found

    Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activated microglia elicits a robust amount of pro-inflammatory cytokines, which are implicated in the pathogenesis of tuberculosis in the central nervous system (CNS). However, little is known about the intracellular signaling mechanisms governing these inflammatory responses in microglia in response to <it>Mycobacterium tuberculosis </it>(Mtb).</p> <p>Methods</p> <p>Murine microglial BV-2 cells and primary mixed glial cells were stimulated with sonicated Mtb (s-Mtb). Intracellular ROS levels were measured by staining with oxidative fluorescent dyes [2',7'-Dichlorodihydrofluorescein diacetate (H<sub>2</sub>DCFDA) and dihydroethidium (DHE)]. NADPH oxidase activities were measured by lucigenin chemiluminescence assay. S-Mtb-induced MAPK activation and pro-inflammatory cytokine release in microglial cells were measured using by Western blot analysis and enzyme-linked immunosorbent assay, respectively.</p> <p>Results</p> <p>We demonstrate that s-Mtb promotes the up-regulation of reactive oxygen species (ROS) and the rapid activation of mitogen-activated protein kinases (MAPKs), including p38 and extracellular signal-regulated kinase (ERK) 1/2, as well as the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-12p40 in murine microglial BV-2 cells and primary mixed glial cells. Both NADPH oxidase and mitochondrial electron transfer chain subunit I play an indispensable role in s-Mtb-induced MAPK activation and pro-inflammatory cytokine production in BV-2 cells and mixed glial cells. Furthermore, the activation of cytosolic NADPH oxidase p47phox and MAPKs (p38 and ERK1/2) is mutually dependent on s-Mtb-induced inflammatory signaling in murine microglia. Neither TLR2 nor dectin-1 was involved in s-Mtb-induced inflammatory responses in murine microglia.</p> <p>Conclusion</p> <p>These data collectively demonstrate that s-Mtb actively induces the pro-inflammatory response in microglia through NADPH oxidase-dependent ROS generation, although the specific pattern-recognition receptors involved in these responses remain to be identified.</p

    Phenotypic and Genotypic Correction of WASP Gene Mutation in Wiskott-Aldrich Syndrome by Unrelated Cord Blood Stem Cell Transplantation

    Get PDF
    We present two cases of Wiskott-Aldrich syndrome (WAS), in which nonsense mutations in the WASP gene were corrected phenotypically as well as genotypically by unrelated cord blood stem cell transplantation (CBSCT). Two male patients were diagnosed with WAS at the age of 5-month and 3-month and each received unrelated CBSCT at 16-month and 20-month of age, respectively. The infused cord blood (CB) units had 4/6 and 5/6 HLA matches and the infusion doses of total nucleated cells (TNC) and CD34+ cells were 6.24×107/kg and 5.08×107/kg for TNC and 1.33×105/kg and 4.8×105/kg for CD34+ cells, for UPN1 and UPN2, respectively. Complete donor cell chimerism was documented by variable number tandem repeat (VNTR) with neutrophil engraftment on days 31 and 13 and platelets on days 58 and 50, respectively. Immunologic reconstitution demonstrated that CBSCT resulted in consistent and stable T-, B-, and NK-cell development. Flow cytometric analysis for immunologic markers and sequence analysis of the WASP gene mutation revealed a normal pattern after CBSCT. These cases demonstrate that CBs can be an important source of stem cells for the phenotypical and genotypical correction of genetic diseases such as WAS

    Reversible Symptomatic Myocarditis Induced by All-Trans Retinoic Acid Administration during Induction Treatment of Acute Promyelocytic Leukemia: Rare Cardiac Manifestation as a Retinoic Acid Syndrome

    Get PDF
    Treatment by All-trans retinoic acid (ATRA) followed by anthracycline-AraC chemotherapy has improved the outcome of acute promyelocytic leukemia. ATRA is usually well tolerated, but a few major side effects can be observed. Retinoic acid syndrome (RAS) often occurs during the induction chemotherapy of acute promyelocytic leukemia. A pericardial effusion is a common cardiac manifestation but myocarditis has been rarely documented. Here we reports a very rare case of fully recovered myocarditis as a result of RAS related to ATRA administration during induction treatment of acute promyelocytic leukemia which documented by echocardiographic evidence

    Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock

    Get PDF
    Mammalian 2-Cys peroxiredoxin II (Prx II) is a cellular peroxidase that eliminates endogenous H2O2. The involvement of Prx II in the regulation of lipopolysaccharide (LPS) signaling is poorly understood. In this report, we show that LPS induces substantially enhanced inflammatory events, which include the signaling molecules nuclear factor ÎșB and mitogen-activated protein kinase (MAPK), in Prx II–deficient macrophages. This effect of LPS was mediated by the robust up-regulation of the reactive oxygen species (ROS)–generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and the phosphorylation of p47phox. Furthermore, challenge with LPS induced greater sensitivity to LPS-induced lethal shock in Prx II–deficient mice than in wild-type mice. Intravenous injection of Prx II–deficient mice with the adenovirus-encoding Prx II gene significantly rescued mice from LPS-induced lethal shock as compared with the injection of a control virus. The administration of catalase mimicked the reversal effects of Prx II on LPS-induced inflammatory responses in Prx II–deficient cells, which suggests that intracellular H2O2 is attributable, at least in part, to the enhanced sensitivity to LPS. These results indicate that Prx II is an essential negative regulator of LPS-induced inflammatory signaling through modulation of ROS synthesis via NADPH oxidase activities and, therefore, is crucial for the prevention of excessive host responses to microbial products

    The Role of Nitric Oxide in Mycobacterial Infections

    Get PDF
    Although tuberculosis poses a significant health threat to the global population, it is a challenge to develop new and effective therapeutic strategies. Nitric oxide (NO) and inducible NO synthase (iNOS) are important in innate immune responses to various intracellular bacterial infections, including mycobacterial infections. It is generally recognized that reactive nitrogen intermediates play an effective role in host defense mechanisms against tuberculosis. In a murine model of tuberculosis, NO plays a crucial role in antimycobacterial activity; however, it is controversial whether NO is critically involved in host defense against Mycobacterium tuberculosis in humans. Here, we review the roles of NO in host defense against murine and human tuberculosis. We also discuss the specific roles of NO in the central nervous system and lung epithelial cells during mycobacterial infection. A greater understanding of these defense mechanisms in human tuberculosis will aid in the development of new strategies for the treatment of disease

    Anion‐Dependent Polarization and Piezoelectric Power Generation in Hybrid Halide MAPbX3 (X = I, Br, and Cl) Thin Films with Out‐of‐Plane Structural Adjustments

    No full text
    Abstract Anion‐dependent differences in the electromechanical energy harvesting capability of perovskite halides have not been experimentally demonstrated thus far. Herein, anion‐dependent piezoelectricity and bending‐driven power generation in high‐quality methylammonium lead halide MAPbX3 (X = I, Br, and Cl) thin films are explored; additionally, anisotropic in situ strain is imposed to improve energy harvesting under tensile bending. After applying the maximum in situ strain of −0.73% for all the halide thin films, the MAPbI3 thin‐film harvester exhibited a peak voltage/current of ≈23.1 V/≈1703 nA as the best values, whereas MAPbBr3 and MAPbCl3 demonstrated ≈5.6 V/≈176 nA and ≈3.3 V/≈141 nA, respectively, under identical bending conditions. Apart from apparent ferroelectricity of tetragonal MAPbI3, origin of the piezoelectricity in both cubic MAPbBr3 and MAPbCl3 is explored as being related to organic–inorganic hydrogen bonding, lattice distortion, and ionic migration, with experimental supports of effective piezoelectric coefficient and grain boundary potential. Conclusively, piezoelectricity of the cubic halides is assumed to be due to their soft polarity modes and relatively low elastic modulus with vacancies contributing to space‐charge polarization. In the case of ferroelectric MAPbI3, the distortion of PbI6 octahedra and atomic displacement within each octahedron are quantitatively estimated
    • 

    corecore