22 research outputs found

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Practical guide to machine vision software: an introduction with LabVIEW

    No full text
    For both students and engineers in R&D, this book explains machine vision in a concise, hands-on way, using the Vision Development Module of the LabView software by National Instruments. Following a short introduction to the basics of machine vision and the technical procedures of image acquisition, the book goes on to guide readers in the use of the various software functions of LabView's machine vision module. It covers typical machine vision tasks, including particle analysis, edge detection, pattern and shape matching, dimension measurements as well as optical character recognition, enabl

    DETC2003/VIB-48610 APPLICATION OF TAGUCHI METHOD TO IDENTIFY DAMAGE IN CANTILEVER BEAM

    No full text
    ABSTRACT A robust damage identification technique is presented such that the location and severity of damages can be identified in presence of random errors in measured data as well as systematic errors in analytical model. In order to identify damage efficiently, the concept of design of experiment using orthogonal array is used for screening main effects of each parameter which corresponds to possible damage location in FE model. Then, Taguchi method, which has been widely used for robust design in industry, is applied to the optimization of the objective function, which is defined by the difference between measured and analytical modal data, by updating the parameters in analytical FE model in an iterative way. The numerical simulation of cantilever beam shows that various types of damages can be identified effectively with reasonable accuracy

    Green laser sintering of copper oxide (CuO) nano particle (NP) film to form Cu conductive lines

    No full text
    Copper oxide (CuO) nanoparticle (NP) ink is a potential candidate for low-cost alternatives to other metal-based nano-particle inks (e.g., Au, Ag.) in printed electronics. To obtain Cu patterns from CuO NP ink, CuO NP inks should be converted to Cu particles, and be fused to form a connected conductive line. For this purpose, photonic sintering methods have been widely used, which generate the heat required for sintering via the absorption of light. In this study, we used continuous wave (CW) green laser with 532 nm wavelength, since the laser has the advantage of selective sintering by irradiation of light only on the target place. We investigated the optimal sintering parameters, such as laser power and scanning speed, using the green laser, in order to obtain low resistivity. We also investigated the pre-treatment conditions, such as pre-baking, which is required to evaporate solvents in the ink. We found that over-baking of deposited film will adversely affect the sintering, because film can be easily damaged from laser irradiation. As a result of laser sintering, we obtained the resistivity of (9.5 and 71.6) μΩ·cm when the pre-baked thicknesses of CuO films were (546 and 889) nm, respectively. In such cases, the thicknesses were significantly reduced to (141 and 270) nm, respectively

    A Vector Printing Method for High-Speed Electrohydrodynamic (EHD) Jet Printing Based on Encoder Position Sensors

    No full text
    Electrohyrodynamic (EHD) jet printing has been widely used in the field of direct micro-nano patterning applications, due to its high resolution printing capability. So far, vector line printing using a single nozzle has been widely used for most EHD printing applications. However, the application has been limited to low-speed printing, to avoid non-uniform line width near the end points where line printing starts and ends. At end points of line vector printing, the deposited drop amount is likely to be significantly large compared to the rest of the printed lines, due to unavoidable acceleration and deceleration. In this study, we proposed a method to solve the printing quality problems by producing droplets at an equally spaced distance, irrespective of the printing speed. For this purpose, an encoder processing unit (EPU) was developed, so that the jetting trigger could be generated according to user-defined spacing by using encoder position signals, which are used for the positioning control of the two linear stages
    corecore