3,626 research outputs found

    High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO

    Get PDF
    High performance thin film transistor (TFT) with atomic layer deposition (ALD) nitrogen doped ZnO (ZnO:N) as an active layer is demonstrated. The electrical properties of ZnO thin films were effectively controlled by in situ nitrogen doping using NH4OH as a source for reactants. Especially, the electron concentration in ZnO was lowered to below 10(15) cm(-3). Good device characteristics were obtained from the inverted staggered type TFTs with ZnO:N channel and ALD Al2O3 gate insulator; mu(sat)=6.7 cm(2)/V s, I-off=2.03x10(-12) A, I-on/off=9.46x10(7), and subthreshold swing=0.67 V/decade. The entire TFT fabrication processes were carried out at below 150 degrees C, which is a favorable process for plastic based flexible display. (C) 2007 American Institute of Physics.X11126sciescopu

    Which country is truly developed? COVID-19 has answered the question

    Get PDF

    Amplified Arctic warming by phytoplankton under greenhouse warming

    Get PDF
    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.open111414Ysciescopu

    Post-Stenotic Recirculating Flow May Cause Hemodynamic Perforator Infarction

    Get PDF
    Background and Purpose The primary mechanism underlying paramedian pontine infarction (PPI) is atheroma obliterating the perforators. Here, we encountered a patient with PPI in the post-stenotic area of basilar artery (BA) without a plaque, shown, by high-resolution magnetic resonance imaging (HR-MRI). We performed an experiment using a 3D-printed BA model and a particle image velocimetry (PIV) to explore the hemodynamic property of the post-stenotic area and the mechanism of PPI. Methods 3D-model of a BA stenosis was reconstructed with silicone compound using a 3D printer based on the source image of HR-MRI. Working fluid seeded with fluorescence particles was used and the velocity of those particles was measured horizontally and vertically. Furthermore, microtubules were inserted into the posterior aspect of the model to measure the flow rates of perforators (pre- and post-stenotic areas). The flow rates were compared between the microtubules. Results A recirculating flow was observed from the post-stenotic area in both directions forming a spiral shape. The velocity of the flow in these regions of recirculation was about one-tenth that of the flow in other regions. The location of recirculating flow well corresponded with the area with low-signal intensity at the time-of-flight magnetic resonance angiography and the location of PPI. Finally, the flow rate through the microtubule inserted into the post-stenotic area was significantly decreased comparing to others (P<0.001). Conclusions Perforator infarction may be caused by a hemodynamic mechanism altered by stenosis that induces a recirculation flow. 3D-printed modeling and PIV are helpful understanding the hemodynamics of intracranial stenosis.114Ysciescopu

    Association analysis of polymorphism in KIAA1717, HUMMLC2B, DECR1 and FTO genes with meat quality traits of the Berkshire breed

    Get PDF
    Single nucleotide polymorphisms (SNPs) in KIAA1717, HUMMLC2B, DECR1, and FTO genes have been found to be associated with some pork meat quality traits. In this study, we discovered that, in addition to meat quality traits reported previously, SNPs in these genes also are significantly associated with other meat quality traits in the Berkshire breed. A total of 323 Berkshire pigs bred under the same conditions were used for meat quality evaluation and polymerase chain reaction-amplified genes with restriction endonucleases (PCR-RFLP) genotyping analyses. The association analysis of RFLP genotyping with meat quality traits revealed that the SNPs in these 4 genes have novel associations with multiple meat quality traits (p &lt; 0.01 or p &lt; 0.05); a SNP in KIAA1717 was associated with meat color (CIE L), backfat thickness, drip loss, water-holding capacity, and pH24hr; a SNP in HUMMLC2B was associated with chemical composition (collagen), drip loss, shear force, and pH24hr; a SNP in DECR1 was associated with meat color (CIE a and b) and backfat thickness; and a SNP in FTO was associated with meat color (CIE L, a and b), protein content, drip loss, and water-holding capacity. Taken collectively, our results suggest that these 4 SNPs may be used for marker-assisted selection as a genetic marker for meat quality traits in Berkshire pigs.Key words: Berkshire, genetic markers, meat quality, SN

    Spatially Resolved Magnetic Field Structure in the Disk of a T Tauri Star

    Get PDF
    Magnetic fields in accretion disks play a dominant role during the star formation process but have hitherto been observationally poorly constrained. Field strengths have been inferred on T Tauri stars themselves and possibly in the innermost part of the accretion disk, but the strength and morphology of the field in the bulk of the disk have not been observed. Unresolved measurements of polarized emission (arising from elongated dust grains aligned perpendicular to the field) imply average fields aligned with the disks. Theoretically, the fields are expected to be largely toroidal, poloidal, or a mixture of the two, which imply different mechanisms for transporting angular momentum in the disks of actively accreting young stars such as HL Tau. Here we report resolved measurements of the polarized 1.25 mm continuum emission from HL Tau's disk. The magnetic field on a scale of 80 AU is coincident with the major axis (~210 AU diameter) of the disk. From this we conclude that the magnetic field inside the disk at this scale cannot be dominated by a vertical component, though a purely toroidal field does not fit the data well either. The unexpected morphology suggests that the magnetic field's role for the accretion of a T Tauri star is more complex than the current theoretical understanding.Comment: Accepted for publication in Natur

    Ripple Texturing of Suspended Graphene Atomic Membranes

    Full text link
    Graphene is the nature's thinnest elastic membrane, with exceptional mechanical and electrical properties. We report the direct observation and creation of one-dimensional (1D) and 2D periodic ripples in suspended graphene sheets, using spontaneously and thermally induced longitudinal strains on patterned substrates, with control over their orientations and wavelengths. We also provide the first measurement of graphene's thermal expansion coefficient, which is anomalously large and negative, ~ -7x10^-6 K^-1 at 300K. Our work enables novel strain-based engineering of graphene devices.Comment: 15 pages, 4 figure

    A comparative study on the marginal fit of zirconia cores manufactured by CAD/CAM and copy milling methods

    Get PDF
    Purpose: The marginal fit of zirconia cores that were produced by CAD/CAM and by copy milling systems was compared and analyzed to confirm the significance of the variation in dental technicians skill between the two systems.Materials and Methods: Using dental resin teeth and individual trays, 30 plaster casts were produced. Fifteen casts were assigned to be used with five different zirconia core manufacturing dental laboratories using the same CAD/CAM system, which were designated as the CC group. The remaining 15 were assigned to be used with five different zirconia core manufacturing dental laboratories using also the same copy milling system and were designated as the CM group. The zirconia cores were fabricated and were cemented onto the casts. The vertical marginal opening was measured under an optical microscope at 75x magnification. The measured vertical marginal discrepancies were analyzed using an independent sample t-test, and the significance of the vertical marginal gap value for each dental laboratory was analyzed by performing the Kruskal-Wallis test.Results: The means and standard deviations for the marginal discrepancies of the CC and CM groups were found to be 102.73 ± 29.73 μm and 82.25 ± 22.37 μm, respectively. The independent sample t-test showed a significant difference between the two systems; the CAD/CAM system showed a larger vertical marginal gap than the copy milling system. The Kruskal-Wallis test indicated that no significant distributional differences were found between the dental laboratories in either the CAD/CAM or the copy milling systems.Conclusions: The copy milling system may produce more accurate zirconia restorations than the CAD/CAM system. The technicians skill of a copy milling system may not be a determining factor influencing the accuracy of a single zirconia core.Purpose: The marginal fit of zirconia cores that were produced by CAD/CAM and by copy milling systems was compared and analyzed to confirm the significance of the variation in dental technicians skill between the two systems. Materials and Methods: Using dental resin teeth and individual trays, 30 plaster casts were produced. Fifteen casts were assigned to be used with five different zirconia core manufacturing dental laboratories using the same CAD/CAM system, which were designated as the CC group. The remaining 15 were assigned to be used with five different zirconia core manufacturing dental laboratories using also the same copy milling system and were designated as the CM group. The zirconia cores were fabricated and were cemented onto the casts. The vertical marginal opening was measured under an optical microscope at 75x magnification. The measured vertical marginal discrepancies were analyzed using an independent sample t-test, and the significance of the vertical marginal gap value for each dental laboratory was analyzed by performing the Kruskal-Wallis test. Results: The means and standard deviations for the marginal discrepancies of the CC and CM groups were found to be 102.73 ± 29.73 µm and 82.25 ± 22.37 µm, respectively. The independent sample t-test showed a significant difference between the two systems; the CAD/CAM system showed a larger vertical marginal gap than the copy milling system. The Kruskal-Wallis test indicated that no significant distributional differences were found between the dental laboratories in either the CAD/CAM or the copy milling systems. Conclusions: The copy milling system may produce more accurate zirconia restorations than the CAD/CAM system. The technicians skill of a copy milling system may not be a determining factor influencing the accuracy of a single zirconia core.OAIID:oai:osos.snu.ac.kr:snu2013-01/102/2008003883/14SEQ:14PERF_CD:SNU2013-01EVAL_ITEM_CD:102USER_ID:2008003883ADJUST_YN:NEMP_ID:A078517DEPT_CD:861CITE_RATE:0FILENAME:dentistry 201311 3 163.pdfDEPT_NM:치의학과EMAIL:[email protected]_YN:NCONFIRM:
    corecore