289 research outputs found

    Phonocardiogram Segmentation with Tiny Computing

    Get PDF
    The stethoscope is a daily used tool that allows medical doctors to diagnose common cardiovascular diseases by listening to heart sounds. However, dedicated medical training is required to operate it. Numerous machine learning techniques have been used in attempts to automate this process and have yielded highly accurate results. However, creating a low power, portable, economical, and accurate machine learning stethoscope calls for tiny processing of phonocardiograms i.e., heart sound digital processing to run within an embedded device. To address the need to deploy the solution within a constrained tiny device, we propose an 8-bit deep learning model with low embedded FLASH and RAM utilization of 126 KiB and 45 KiB respectively, which is optimized for inference on an off-the-shelf STM32H7 microcontroller with an inference time of 12 ms, in 126KiB FLASH and 45 KiB RAM being 91.65% accurate

    Knowing who to trust: Exploring the role of 'ethical metadata' in mediating risk of harm in collaborative genomics research in Africa

    Get PDF
    Background: The practice of making datasets publicly available for use by the wider scientific community has become firmly integrated in genomic science. One significant gap in literature around data sharing concerns how it impacts on scientists’ ability to preserve values and ethical standards that form an essential component of scientific collaborations. We conducted a qualitative sociological study examining the potential for harm to ethnic groups, and implications of such ethical concerns for data sharing. We focused our empirical work on the MalariaGEN Consortium, one of the first international collaborative genomics research projects in Africa. Methods: We conducted a study in three MalariaGEN project sites in Kenya, the Gambia, and the United Kingdom. The study entailed analysis of project documents and 49 semi-structured interviews with fieldworkers, researchers and ethics committee members. Results: Concerns about how best to address the potential for harm to ethnic groups in MalariaGEN crystallised in discussions about the development of a data sharing policy. Particularly concerning for researchers was how best to manage the sharing of genomic data outside of the original collaboration. Within MalariaGEN, genomic data is accompanied by information about the locations of sample collection, the limitations of consent and ethics approval, and the values and relations that accompanied sample collection. For interviewees, this information and context were of important ethical value in safeguarding against harmful uses of data, but is not customarily shared with secondary data users. This challenged the ability of primary researchers to protect against harmful uses of ‘their’ data. Conclusion: We identified three protective mechanisms – trust, the existence of a shared morality, and detailed contextual understanding – which together might play an important role in preventing the use of genomic data in ways that could harm the ethnic groups included in the study. We suggest that the current practice of sharing of datasets as isolated objects rather than as embedded within a particular scientific culture, without regard for the normative context within which samples were collected, may cause ethical tensions to emerge that could have been prevented or addressed had the ‘ethical metadata’ that accompanies genomic data also been shared. </p

    A novel locus of resistance to severe malaria in a region of ancient balancing selection.

    Get PDF
    The high prevalence of sickle haemoglobin in Africa shows that malaria has been a major force for human evolutionary selection, but surprisingly few other polymorphisms have been proven to confer resistance to malaria in large epidemiological studies. To address this problem, we conducted a multi-centre genome-wide association study (GWAS) of life-threatening Plasmodium falciparum infection (severe malaria) in over 11,000 African children, with replication data in a further 14,000 individuals. Here we report a novel malaria resistance locus close to a cluster of genes encoding glycophorins that are receptors for erythrocyte invasion by P. falciparum. We identify a haplotype at this locus that provides 33% protection against severe malaria (odds ratio = 0.67, 95% confidence interval = 0.60-0.76, P value = 9.5 × 10(-11)) and is linked to polymorphisms that have previously been shown to have features of ancient balancing selection, on the basis of haplotype sharing between humans and chimpanzees. Taken together with previous observations on the malaria-protective role of blood group O, these data reveal that two of the strongest GWAS signals for severe malaria lie in or close to genes encoding the glycosylated surface coat of the erythrocyte cell membrane, both within regions of the genome where it appears that evolution has maintained diversity for millions of years. These findings provide new insights into the host-parasite interactions that are critical in determining the outcome of malaria infection

    Genetic determinants of glucose-6-phosphate dehydrogenase activity in Kenya

    Get PDF
    Background: The relationship between glucose-6-phosphate dehydrogenase (G6PD) deficiency and clinical phenomena such as primaquine-sensitivity and protection from severe malaria remains poorly defined, with past association studies yielding inconsistent and conflicting results. One possibility is that examination of a single genetic variant might underestimate the presence of true effects in the presence of unrecognized functional allelic diversity. Methods: We systematically examined this possibility in Kenya, conducting a fine-mapping association study of erythrocyte G6PD activity in 1828 Kenyan children across 30 polymorphisms at or around the G6PD locus. Results: We demonstrate a strong functional role for c.202G>A (rs1050828), which accounts for the majority of variance in enzyme activity observed (P=1.5 × 10-200, additive model). Additionally, we identify other common variants that exert smaller, intercorrelated effects independent of c.202G>A, and haplotype analyses suggest that each variant tags one of two haplotype motifs that are opposite in sequence identity and effect direction. We posit that these effects are of biological and possible clinical significance, specifically noting that c.376A>G (rs1050829) augments 202AG heterozygote risk for deficiency trait by two-fold (OR = 2.11 [1.12 - 3.84], P=0.014). Conclusions: Our results suggest that c.202G>A is responsible for the majority of the observed prevalence of G6PD deficiency trait in Kenya, but also identify a novel role for c.376A>G as a genetic modifier which marks a common haplotype that augments the risk conferred to 202AG heterozygotes, suggesting that variation at both loci merits consideration in genetic association studies probing G6PD deficiency-associated clinical phenotypes. </p

    Non-O ABO blood group genotypes differ in their associations with Plasmodium falciparum rosetting and severe malaria

    Get PDF
    Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that “double dose” non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than “single dose” heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity

    Anatomy of Indian heatwaves

    Get PDF
    India suffers from major heatwaves during March-June. The rising trend of number of intense heatwaves in recent decades has been vaguely attributed to global warming. Since the heat waves have a serious effect on human mortality, root causes of these heatwaves need to be clarified. Based on the observed patterns and statistical analyses of the maximum temperature variability, we identified two types of heatwaves. The first-type of heatwave over the north-central India is found to be associated with blocking over the North Atlantic. The blocking over North Atlantic results in a cyclonic anomaly west of North Africa at upper levels. The stretching of vorticity generates a Rossby wave source of anomalous Rossby waves near the entrance of the African Jet. The resulting quasi-stationary Rossby wave-train along the Jet has a positive phase over Indian subcontinent causing anomalous sinking motion and thereby heatwave conditions over India. On the other hand, the second-type of heatwave over the coastal eastern India is found to be due to the anomalous Matsuno-Gill response to the anomalous cooling in the Pacific. The Matsuno-Gill response is such that it generates northwesterly anomalies over the landmass reducing the land-sea breeze, resulting in heatwaves

    Malaria protection due to sickle haemoglobin depends on parasite genotype

    Get PDF
    Host genetic factors can confer resistance against malaria1, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples. The HbS-associated alleles include nonsynonymous variants in the gene for the acyl-CoA synthetase family member2-4 PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The alleles are in strong linkage disequilibrium and have frequencies that covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations

    Low frequency of the TIRAP S180L polymorphism in Africa, and its potential role in malaria, sepsis, and leprosy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Toll-like receptors (TLRs) mediate innate immunity to various pathogens. A mutation (S180L) in the TLR downstream signal transducer <it>TIRAP </it>has recently been reported to be common in Europeans and Africans and to roughly half the risks of heterogeneous infectious diseases including malaria, tuberculosis, bacteremia, and invasive pneumococal disease in heterozygous mutation carriers.</p> <p>Methods</p> <p>We assessed the <it>TIRAP </it>S180L variant by melting curve and RFLP analysis in 1095 delivering women from malaria-endemic Ghana, as well as in a further 1114 individuals participating in case control studies on sepsis and leprosy in Germany, Turkey and Bangladesh.</p> <p>Results</p> <p>In Ghana, the <it>TIRAP </it>S180L polymorphism was virtually absent. In contrast, the mutation was observed among 26.6%, 32.9% and 12% of German, Bangladesh and Turkish controls, respectively. No significant association of the heterozygous genotype with sepsis or leprosy was observed. Remarkably, homozygous <it>TIRAP </it>180L tend to increase the risk of sepsis in the German study (<it>P </it>= 0.04).</p> <p>Conclusion</p> <p>A broad protective effect of <it>TIRAP </it>S180L against infectious diseases <it>per se </it>is not discernible.</p

    Investigation of Host Candidate Malaria-Associated Risk/Protective SNPs in a Brazilian Amazonian Population

    Get PDF
    The Brazilian Amazon is a hypo-endemic malaria region with nearly 300,000 cases each year. A variety of genetic polymorphisms, particularly in erythrocyte receptors and immune response related genes, have been described to be associated with susceptibility and resistance to malaria. In order to identify polymorphisms that might be associated with malaria clinical outcomes in a Brazilian Amazonian population, sixty-four human single nucleotide polymorphisms in 37 genes were analyzed using a Sequenom massARRAY iPLEX platform. A total of 648 individuals from two malaria endemic areas were studied, including 535 malaria cases (113 individuals with clinical mild malaria, 122 individuals with asymptomatic infection and 300 individuals with history of previous mild malaria) and 113 health controls with no history of malaria. The data revealed significant associations (p<0.003) between one SNP in the IL10 gene (rs1800896) and one SNP in the TLR4 gene (rs4986790) with reduced risk for clinical malaria, one SNP in the IRF1 gene (rs2706384) with increased risk for clinical malaria, one SNP in the LTA gene (rs909253) with protection from clinical malaria and one SNP in the TNF gene (RS1800750) associated with susceptibility to clinical malaria. Also, a new association was found between a SNP in the CTL4 gene (rs2242665), located at the major histocompatibility complex III region, and reduced risk for clinical malaria. This study represents the first association study from an Amazonian population involving a large number of host genetic polymorphisms with susceptibility or resistance to Plasmodium infection and malaria outcomes. Further studies should include a larger number of individuals, refined parameters and a fine-scale map obtained through DNA sequencing to increase the knowledge of the Amazonian population genetic diversity
    corecore