151 research outputs found

    Etude en rayons X cohérents de la dynamique de suspensions concentrées de sphères dures

    Get PDF
    Les suspensions colloïdales de particules sphériques présentant des interactions de type sphères dures font partie des systèmes les plus simples et les plus largement étudiés en Matière Molle. Elles peuvent être considérées comme systèmes modèles pour tester des théories plus générales, par exemple en ce qui concerne la cristallisation [1] ou la transition vitreuse [2]. Malgré de nombreux résultats théoriques et expérientaux dans ce domaine, le comportement dynamique des suspensions de sphères dures n'a pas été complètement élucidé.La spectroscopie à corrélation de photons X (XPCS) est une technique de diffusion cohérente équivalente à la Diffusion Quasi-Elastique de la Lumière [3], qui est un des principaux outils d'investigation de la dynamique colloïdale [4]. Comparée à la luière visible, l'utilisation de rayons X procure des rensignements sur les transferts de moment de plus haute énergie, et évite les diffusions multiples - phénomène qui complique sensiblement les études en DQEL pour les échantillons concentrés. De plus, l'utilisation du détecteur 2D compteur de photons (MAXIPIX) disponible sur la ligne ID10 (ESRF) donne des renseignements sur l'évolution de la dynamique de l'échantillon au cours de l'exposition, via les fonctions de corrélation à deux temps.Dans ce travail, nous avons étudié une suspension de spheres colloïdales de PMMA (poly(méthylmétacrylate)) stériquement stabilisées. La distribution en taille des particules et leur concentration ont été obtenues par diffusion de rayons X aux petits angles (SAXS). Les expériences de XPCS effectuées aux plus grandes fractions volumiques en particules (>0.5) mettent en évidence à la fois des temps de diffusion courts et des temps longs autour des pics de Bragg. Une comparaison avec une précédente étude [5] montre, pour une petite gamme de fractions volumiques, une modification drastique de la loi d'échelle entre les temps de relaxation courts et les temps longs qui avait été initialement proposée par Segrè et Pusey [6]. L'analyse des fonctions de corrélation à deux temps révèle un comportement dynamique complexe des échantillons légèrement au-dessus de la transition vitreuse, alors qu'on n'observe aucun signe de modifications structurales via diffusion statique. Utiliser la XPCS sur des suspensions en écoulement dans des canaux cylindriques avait fait ses preuves pour renseigner à la fois sur les propriétés dynamiques et d'écoulement de suspensions diluées [7]. Ici, nous discutons les potentialités et les limites de cette méthode, en étudiant l'interaction entre les propriétés rhéologiques et dynamiques dans ces systèmes complexes modèles que sont les verres colloïdaux.[1] P. N. Pusey and W. van Megen. In: Nature 320.6060 (Mar. 1986), pp. 340 342 [2] P. N. Pusey and W. van Megen. In: Phys. Rev. Lett. 59 (18 1987), pp. 2083 2086.[3] V. A. Martinez et al. In: The Journal of Chemical Physics 134.5, 054505 (2011), p. 054505.[4] B. J. Berne and R. Pecora. Dynamic Light Scattering with application to chemistry, biology and physics. Dover Publications, New York, 2000. [5] D. Orsi et al. Dynamics in dense hard-sphere colloidal suspensions . In: Phys. Rev. E 85 (1 2012), p. 011402. doi: 10.1103/PhysRevE.85.011402. url: http://link.aps.org/doi/1 0.1103/PhysRevE.85.011402. [6] P. N. Segrè and P. N. Pusey. In: Phys. Rev. Lett. 77.4 (1996), pp. 771 774.[7] A. Fluerasu et al. In: New Journal of Physics 12.3 (2010)Colloidal suspensions of spherical particles presenting hard-sphere like interactions is one of the simplest and most widely studied systems of soft condensed matter. They can be treated as a model for testing fundamental theories, regarding e.g. crystallization [1] or glass transition [2]. Despite the long history of both theoretical and experimental research, the dynamic behavior of hard sphere suspensions still lacks a complete understanding.X-ray Photon Correlation Spectroscopy (XPCS) is a coherent scattering technique equivalent to Dynamic Light Scattering (DLS) [3], which is one of the main tools used in the study of colloidal dynamics [4]. Comparing to visible light, the use of X-rays provides access to higher momentum transfer vector values and allows to avoid multiple scattering a phenomena significantly complicating DLS measurements on concentrated samples. Moreover, the use of a fast, single photon counting area detector (MAXIPIX) available at the ID10 beamline at ESRF gives insight into the evolution of sample dynamics during the measurement time by the means of two-time correlation functions.In this work suspensions of sterically stabilized poly(methyl methacrylate) (PMMA) colloidal spheres were used. Particle size, polydispersity and volume fractions of the samples were obtained using the Small-Angle X-ray Scattering (SAXS) technique. XPCS measurements at high volume fractions (>0.5) show both short- and long-time diffusive behaviour for scattering vector values around, but not restricted to the structure factor peak position. A comparison with an earlier study [5] shows a dramatic change in the approximate scaling between the short- and long-time relaxation rates, initially proposed by Segrè and Pusey in [6], over a small range of volume fractions. The analysis of two-time correlation functions reveals complex dynamic behaviour of a sample slightly above the glass transition, while no signs of structural changes are observed in the static scattering patterns. The studies indicate the dynamics being governed by a jamming transition driven by restrictions in free volume rather than a glass transition as know from the mode-coupling theory. A combination of XPCS with flow in a cylindrical channel has demonstrated previously to give both dynamic and flow properties of dilute suspensions [7]. Here we discuss the potential and limitations of this method in the study of the interplay between rheological properties and dynamics in complex systems such as colloidal glasses. [1] P. N. Pusey and W. van Megen. In: Nature 320.6060 (Mar. 1986), pp. 340 342[2] P. N. Pusey and W. van Megen. In: Phys. Rev. Lett. 59 (18 1987), pp. 2083 2086.[3] V. A. Martinez et al. In: The Journal of Chemical Physics 134.5, 054505 (2011), p. 054505.[4] B. J. Berne and R. Pecora. Dynamic Light Scattering with application to chemistry, biology and physics. Dover Publications, New York, 2000.[5] D. Orsi et al. Dynamics in dense hard-sphere colloidal suspensions . In: Phys. Rev. E 85 (2012), p. 011402.[6] P. N. Segrè and P. N. Pusey. In: Phys. Rev. Lett. 77.4 (1996), pp. 771 774.[7] A. Fluerasu et al. In: New Journal of Physics 12.3 (2010)SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Increases in Vein Length Compensate for Leaf Area Lost to Lobing in Grapevine

    Get PDF
    Premise:Leaf lobing and leaf size vary considerably across and within species,including among grapevines (Vitisspp.), some of the best‐studied leaves. Weexamined the relationship between leaf lobing and leaf area across grapevinepopulations that varied in extent of leaf lobing.Methods:We used homologous landmarking techniques to measure 2632 leavesacross 2 years in 476 unique, genetically distinct grapevines fromfive biparentalcrosses that vary primarily in the extent of lobing. We determined to what extent leafarea explained variation in lobing, vein length, and vein to blade ratio.Results:Although lobing was the primary source of variation in shape across theleaves we measured, leaf area varied only slightly as a function of lobing. Rather, leafarea increases as a function of total major vein length, total branching vein length, andvein to blade ratio. These relationships are stronger for more highly lobed leaves, withthe residuals for each model differing as a function of distal lobing.Conclusions:For leaves with different extents of lobing but the same area, the morehighly lobed leaves have longer veins and higher vein to blade ratios, allowing themto maintain similar leaf areas despite increased lobing. Thesefindings show howmore highly lobed leaves may compensate for what would otherwise result in areduced leaf area, allowing for increasedphotosynthetic capacity through similarleaf siz

    Rootstock Effects on Scion Phenotypes in a ‘Chambourcin’ Experimental Vineyard

    Get PDF
    Understanding how root systems modulate shoot system phenotypes is a fundamental question in plant biology and will be useful in developing resilient agricultural crops. Grafting is a common horticultural practice that joins the roots (rootstock) of one plant to the shoot (scion) of another, providing an excellent method for investigating how these two organ systems affect each other. In this study, we used the French-American hybrid grapevine ‘Chambourcin’ (Vitis L.) as a model to explore the rootstock–scion relationship. We examined leaf shape, ion concentrations, and gene expression in ‘Chambourcin’ grown ungrafted as well as grafted to three different rootstocks (‘SO4’, ‘1103P’ and ‘3309C’) across 2 years and three different irrigation treatments. We found that a significant amount of the variation in leaf shape could be explained by the interaction between rootstock and irrigation. For ion concentrations, the primary source of variation identified was the position of a leaf in a shoot, although rootstock and rootstock by irrigation interaction also explained a significant amount of variation for most ions. Lastly, we found rootstock-specific patterns of gene expression in grafted plants when compared to ungrafted vines. Thus, our work reveals the subtle and complex effect of grafting on ‘Chambourcin’ leaf morphology, ionomics, and gene expression

    Numerical Analysis of an Intercity Bus Structure: A Simple Unifilar Model Proposal to Assess Frontal and Semifrontal Crash Scenarios

    Get PDF
    Abstract To improve the safety of the intercity bus structure against impact scenarios and to reduce the injuries and death in traffic accidents it is crucial in a country with continental dimensions like Brazil, where the road transport matrix is fundamental in the traffic of people and goods. In this context in the present article, a numerical model of an intercity bus was built with elastoplastic beam implemented in a commercial software Ls-Dyna. This model was submitted to different frontal and semi frontal impact crash scenarios. With this model were analyzed different accidents which happened in the Brazilian highways, it was also simulated a frontal impact test and the results obtained were compared with the experimental results. Finally two numerical approaches were compared, they are: a simple model made with lumped masses and non-linear springs series connected, and the elastoplastic beam model. The different comparisons carried out let us validate the intercity bus model created using elastoplastic beam elements and propose to use this model as an effective tool to search for more efficient bus structural configurations against impact scenarios

    The investigation of YAlO3-NdAlO3 system, synthesis and characterization

    Full text link
    The binary phase diagram of the YAlO3 (YAP) - NdAlO3 (NAP) system was determined by differential thermal analysis (DTA) and X-ray powder diffraction (XRD) measurements. High purity nanocrystalline powders and small single crystals of Y_{1-x}Nd_{x}AlO_3 (0 \leq x \leq 1) have been produced successfully by modified sol-gel (Pechini) and micro-pulling-down methods, respectively. Both end members show high mutual solubility >25% in the solid phase, with a miscibility gap for intermediate compositions. A solid solution with x \approx 0.2 melts azeotropic ca. 20 degrees below pure YAP. Such crystals can be grown from the melt without segregation. The narrow solid/liquid region near the azeotrope point could be measured with a "cycling" DTA measurement technique.Comment: 12 pages, 8 figures, submitted to J. Alloys. Comp

    Multi-dimensional Leaf Phenotypes Reflect Root System Genotype in Grafted Grapevine Over the Growing Season

    Get PDF
    Modern biological approaches generate volumes of multi-dimensional data, offering unprecedented opportunities to address biological questions previously beyond reach owing to small or subtle effects. A fundamental question in plant biology is the extent to which below-ground activity in the root system influences above-ground phenotypes expressed in the shoot system. Grafting, an ancient horticultural practice that fuses the root system of one individual (the rootstock) with the shoot system of a second, genetically distinct individual (the scion), is a powerful experimental system to understand below-ground effects on above-ground phenotypes. Previous studies on grafted grapevines have detected rootstock influence on scion phenotypes including physiology and berry chemistry. However, the extent of the rootstock\u27s influence on leaves, the photosynthetic engines of the vine, and how those effects change over the course of a growing season, are still largely unknown

    Grapevine leaf size influences canopy temperature

    Get PDF
    Grapevine leaves have diverse shapes and sizes which are influenced by many factors including genetics, vine phytosanitary status, environment, leaf and vine age, and node position on the shoot. To determine the relationship between grapevine leaf shape or size and leaf canopy temperature, we examined five seedling populations grown in a vineyard in California, USA. The populations had one parent with compound leaves of the Vitis piasezkii type and a different second parent with non-compound leaves. In previous work, we had measured the shape and size of the leaves collected from these populations using 21 homologous landmarks. Here, we paired these morphological data with canopy temperature measurements made using a handheld infrared thermometer. After recording time of sampling and canopy temperature, we used a linear model between time of sampling and canopy temperature to estimate temperature residuals. Based on these residuals, we determined if the canopy temperature of each vine was cooler or warmer than expected, based on the time of sampling. We established a relationship between leaf size and canopy temperature: vines with larger leaves were cooler than expected. By contrast, leaf shape was not strongly correlated with variation in canopy temperature. Ultimately, these findings indicate that vines with larger leaves may contribute to the reduction of overall canopy temperature; however, further work is needed to determine whether this is due to variation in leaf size, differences in the openness of the canopy or other related traits

    Potential of a multiparametric optical sensor for determining in situ the maturity components of red and white vitis vinifera wine grapes

    Get PDF
    A non-destructive fluorescence-based technique for evaluating Vitis vinifera L. grape maturity using a portable sensor (Multiplex ®) is presented. It provides indices of anthocyanins and chlorophyll in Cabernet Sauvignon, Merlot and Sangiovese red grapes and of flavonols and chlorophyll in Vermentino white grapes. The good exponential relationship between the anthocyanin index and the actual anthocyanin content determined by wet chemistry was used to estimate grape anthocyanins from in field sensor data during ripening. Marked differences were found in the kinetics and the amount of anthocyanins between cultivars and between seasons. A sensor-driven mapping of the anthocyanin content in the grapes, expressed as g/kg fresh weight, was performed on a 7-ha vineyard planted with Sangiovese. In the Vermentino, the flavonol index was favorably correlated to the actual content of berry skin flavonols determined by means of HPLC analysis of skin extracts. It was used to make a non-destructive estimate of the evolution in the flavonol concentration in grape berry samplings. The chlorophyll index was inversely correlated in linear manner to the total soluble solids (°Brix): it could, therefore, be used as a new index of technological maturity. The fluorescence sensor (Multiplex) possesses a high potential for representing an important innovative tool for controlling grape maturity in precision viticulture
    corecore