10 research outputs found

    Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane)

    No full text
    The paper describes a cheap and accessible technique of a poly(dimethylsiloxane) (PDMS) master treatment by thermal aging as a step of double casting microfabrication process. Three-dimensional PDMS microstructures could have been achieved using this technique. It was proved, that thermal aging changes nanotopology of a PDMS surface and thus enhances efficiency of double casting prototyping. The thermally aged PDMS master could have been used for multiple and correct replication of over 98% of the fabricated microstructures. Moreover, lack of chemical modification preserved the biocompatibility of PDMS devices. The fabricated microstructures were successfully utilized for 3D cell culture

    Cellular Uptake of Bevacizumab in Cervical and Breast Cancer Cells Revealed by Single-Molecule Spectroscopy

    No full text
    Bevacizumab is a biological drug that is now extensively studied in clinics against various types of cancer. Although bevacizumab’s action is preferably extracellular, there are reports suggesting its internalization into cancer cells, consequently decreasing its therapeutic potential. Here we are solving this issue by applying fluorescence correlation spectroscopy in living cells. We tracked single molecules of fluorescent bevacizumab in MDA-MB-231 and HeLa cells and proved that mobility measurements bring significant added value to standard imaging techniques. We confirmed the presence of the drug in intracellular vesicles. Additionally, we explicitly excluded the presence of a free cytosolic fraction of bevacizumab in both studied cell types. Extracellular and intracellular concentrations of the drug were measured, giving a partition coefficient on the order of 10–5, comparable with the spontaneous uptake of biologically inert nanoparticles. Our work presents how techniques and models developed for physics can answer biological questions

    Quantitative analysis of biochemical processes in living cells at a single-molecule level:a case of olaparib–PARP1 (DNA repair protein) interactions

    No full text
    Quantitative description of biochemical processes inside living cells and at single-molecule levels remains a challenge at the forefront of modern instrumentation and spectroscopy. This paper demonstrates such single-cell, single-molecule analyses performed to study the mechanism of action of olaparib – an up-to-date, FDA-approved drug for germline-BRCA mutated metastatic breast cancer. We characterized complexes formed with PARPi-FL – fluorescent analog of olaparib in vitro and in cancer cells using the advanced fluorescent-based method: Fluorescence Correlation Spectroscopy (FCS) combined with a length-scale dependent cytoplasmic/nucleoplasmic viscosity model. We determined in vitro olaparib–PARP1 equilibrium constant (6.06 × 108 mol L−1). In the cell nucleus, we distinguished three states of olaparib: freely diffusing drug (24%), olaparib–PARP1 complex (50%), and olaparib–PARP1–RNA complex (26%). We show olaparib accumulation in 3D spheroids, where intracellular concentration is twofold higher than in 2D cells. Moreover, olaparib concentration was tenfold higher (506 nmol L−1 vs. 57 nmol L−1) in cervical cancer (BRCA1 high abundance) than in breast cancer cells (BRCA1 low abundance) but with a lower toxic effect. Thus we confirmed that the amount of BRCA1 protein in the cells is a better predictor of the therapeutic effect of olaparib than its penetration into cancer tissue. Our single-molecule and single-cell approach give a new perspective of drug action in living cells. FCS provides a detailed in vivo insight, valuable in drug development and targeting

    Apparent Anomalous Diffusion in the Cytoplasm of Human Cells: The Effect of Probes’ Polydispersity

    No full text
    This work, based on <i>in vivo</i> and <i>in vitro</i> measurements, as well as <i>in silico</i> simulations, provides a consistent analysis of diffusion of polydisperse nanoparticles in the cytoplasm of living cells. Using the example of fluorescence correlation spectroscopy (FCS), we show the effect of polydispersity of probes on the experimental results. Although individual probes undergo normal diffusion, in the ensemble of probes, an effective broadening of the distribution of diffusion times occursî—¸similar to anomalous diffusion. We introduced fluorescently labeled dextrans into the cytoplasm of HeLa cells and found that cytoplasmic hydrodynamic drag, exponentially dependent on probe size, extraordinarily broadens the distribution of diffusion times across the focal volume. As a result, the <i>in vivo</i> FCS data were effectively fitted with the anomalous subdiffusion model while for a monodisperse probe the normal diffusion model was most suitable. Diffusion time obtained from the anomalous diffusion model corresponds to a probe whose size is determined by the weight-average molecular weight of the polymer. The apparent anomaly exponent decreases with increasing polydispersity of the probes. Our results and methodology can be applied in intracellular studies of the mobility of nanoparticles, polymers, or oligomerizing proteins
    corecore