117 research outputs found

    Two-photon coincident-frequency-entanglement via extended phase matching

    Full text link
    We demonstrate a new class of frequency-entangled states generated via spontaneous parametric down-conversion under extended phase matching conditions. Biphoton entanglement with coincident signal and idler frequencies is observed over a broad bandwidth in periodically poled KTiOPO4_4. We demonstrate high visibility in Hong-Ou-Mandel interferometric measurements under pulsed pumping without spectral filtering, which indicates excellent frequency indistinguishability between the down-converted photons. The coincident-frequency entanglement source is useful for quantum information processing and quantum measurement applications.Comment: 4 pages, 3 figures, submitted to PR

    Cross Section Measurements of Hard Diffraction at the SPS-Collider

    Full text link
    The UA8 experiment previously reported the observation of jets in diffractive events containing leading protons (``hard diffraction''), which was interpreted as evidence for the partonic structure of an exchanged Reggeon, believed to be the Pomeron . In the present Letter, we report the final UA8 hard-diffractive (jet) cross section results and their interpretation. After corrections, the fraction of single diffractive events with mass from 118 to 189 GeV that have two scattered partons, each with Et_jet > 8 GeV, is in the range 0.002 to 0.003 (depending on x_p). We determine the product, fK, of the fraction by which the Pomeron's momentum sum rule is violated and the normalization constant of the Pomeron-Flux-Factor of the proton. For a pure gluonic- or a pure qqbar-Pomeron , respectively: fK = 0.30 +- 0.05 +- 0.09) and (0.56 +- 0.09 +- 0.17) GeV^-2.Comment: 20 pages, 5 Encapsulated Postscript figures, LaTex, Final Version, Physics Letters B (in Pess 1998

    A Study of Inclusive Double-Pomeron-Exchange in p pbar -> p X pbar at root s = 630 GeV

    Full text link
    We report measurements of the inclusive reaction, p pbar -> p X pbar, in events where either or both the beam-like final-state baryons were detected in Roman-pot spectrometers and the central system was detected in the UA2 calorimeter. A Double-Pomeron-Exchange (DPE) analysis of these data and single diffractive data from the same experiment demonstrates that, for central masses of a few GeV, the extracted Pomeron-Pomeron total cross section exhibits an enhancement which exceeds factorization expectations by an order-of-magnitude. This may be a signature for glueball production. The enhancement is shown to be independent of uncertainties connected with possible non-universality of the Pomeron flux factor. Based on our analysis, we present DPE cross section predictions, for unit (1 mb) Pomeron-Pomeron total cross section, at the Tevatron, LHC and the 920 GeV fixed-target experiment, HERA-B.Comment: 52 pages, 27 Encapsulated Postscript figures, 3 Tables, LaTex, Revised version as it will appear in European Physics Journal

    Joint Temporal Density Measurements for Two-Photon State Characterization

    Full text link
    We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density of a two-photon entangled state, showing clearly the time anti-correlation of the coincident-frequency entangled photon pair generated by ultrafast spontaneous parametric down-conversion under extended phase-matching conditions. The new technique enables us to manipulate the frequency entanglement by varying the down-conversion pump bandwidth to produce a nearly unentangled two-photon state that is expected to yield a heralded single-photon state with a purity of 0.88. The time-domain correlation technique complements existing frequency-domain measurement methods for a more complete characterization of photonic entanglement in quantum information processing.Comment: 4 pages, 5 figure

    Bright filter-free source of indistinguishable photon pairs

    Full text link
    We demonstrate a high-brightness source of pairs of indistinguishable photons based on a type-II phase-matched doubly-resonant optical parametric oscillator operated far below threshold. The cavity-enhanced down-conversion output of a PPKTP crystal is coupled into two single-mode fibers with a mode coupling efficiency of 58%. The high degree of indistinguishability between the photons of a pair is demonstrated by a Hong-Ou-Mandel interference visibility of higher than 90% without any filtering at an instantaneous coincidence rate of 450 000 pairs/s per mW of pump power per nm of down-conversion bandwidth. For the degenerate spectral mode with a linewidth of 7 MHz at 795 nm a rate of 70 pairs/(s mW MHz) is estimated, increasing the spectral brightness for indistinguishable photons by two orders of magnitude compared to similar previous sources.Comment: 7 pages, 3 figure

    A Silicon-Based Monolithic Optical Frequency Comb Source

    Full text link
    Recently developed techniques for generating precisely equidistant optical frequencies over broad wavelength ranges are revolutionizing precision physical measurement [1-3]. These frequency "combs" are produced primarily using relatively large, ultrafast laser systems. However, recent research has shown that broad-bandwidth combs can be produced using highly-nonlinear interactions in microresonator optical parametric oscillators [4-11]. Such devices not only offer the potential for developing extremely compact optical atomic clocks but are also promising for astronomical spectroscopy [12-14], ultrashort pulse shaping [15], and ultrahigh-speed communications systems. Here we demonstrate the generation of broad-bandwidth optical frequency combs from a CMOS-compatible integrated microresonator [16,17], which is a fully-monolithic and sealed chip-scale device making it insensitive to the surrounding environment. We characterize the comb quality using a novel self-referencing method and verify that the comb line frequencies are equidistant over a bandwidth that is nearly an order of magnitude larger than previous measurements. In addition, we investigate the ultrafast temporal properties of the comb and demonstrate its potential to serve as a chip-scale source of ultrafast (sub-ps) pulses

    Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion

    Full text link
    The ability to transduce non-classical states of light from one wavelength to another is a requirement for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical fiber transmission of quantum information and near-visible, stationary systems for manipulation and storage. In addition, transducing a single-photon source at 1.3 {\mu}m to visible wavelengths for detection would be integral to linear optical quantum computation due to the challenges of detection in the near-infrared. Recently, transduction at single-photon power levels has been accomplished through frequency upconversion, but it has yet to be demonstrated for a true single-photon source. Here, we transduce the triggered single-photon emission of a semiconductor quantum dot at 1.3 {\mu}m to 710 nm with a total detection (internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm signal maintains the quantum character of the 1.3 {\mu}m signal, yielding a photon anti-bunched second-order intensity correlation, g^(2)(t), that shows the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.Comment: 7 pages, 4 figure

    Hong-Ou-Mandel interference with a single atom

    Get PDF
    The Hong-Ou-Mandel (HOM) effect is widely regarded as the quintessential quantum interference phenomenon in optics. In this work we examine how nonlinearity can smear statistical photon bunching in the HOM interferometer. We model both the nonlinearity and a balanced beam splitter with a single two-level system and calculate a finite probability of anti-bunching arising in this geometry. We thus argue that the presence of such nonlinearity would reduce the visibility in the standard HOM setup, offering some explanation for the diminution of the HOM visibility observed in many experiments. We use the same model to show that the nonlinearity affects a resonant two-photon propagation through a two-level impurity in a waveguide due to a " weak photon blockade" caused by the impossibility of double-occupancy and argue that this effect might be stronger for multi-photon propagation
    • …
    corecore