5 research outputs found

    Molecular dynamics analysis of particle number fluctuations in the mixed phase of a first-order phase transition

    Full text link
    Molecular dynamics simulations are performed for a finite non-relativistic system of particles with Lennard-Jones potential. We study the effect of liquid-gas mixed phase on particle number fluctuations in coordinate subspace. A metastable region of the mixed phase, the so-called nucleation region, is analyzed in terms of a non-interacting cluster model. Large fluctuations due to spinodal decomposition are observed. They arise due to the interplay between the size of the acceptance region and that of the liquid phase. These effects are studied with a simple geometric model. The model results for the scaled variance of particle number distribution are compared with those obtained from the direct molecular dynamic simulations.Comment: 13 pages, 9 figure

    The effect of high-pressure synthesis on flux pinning in MgB2-based superconductors

    No full text
    International audienceIncreasing the pressure during manufacturing MgB2 enhances the volume pinning force and moves the position of the maximum to higher magnetic fields. A similar shift was observed when Ti or SiC was added and the maximum of the volume pinning force was found at higher fields in in situ synthesized materials than in ex situ sintered samples. We attribute the observed changes to Mg–B–O oxygen-enriched regions and grains of higher magnesium borides in the MgB2 matrix. High-temperature processed materials demonstrated mainly point or mixed pinning while grain boundary pinning dominated after low-temperature synthesis

    The effect of high-pressure synthesis on flux pinning in MgB2-based superconductors

    No full text
    International audienceIncreasing the pressure during manufacturing MgB2 enhances the volume pinning force and moves the position of the maximum to higher magnetic fields. A similar shift was observed when Ti or SiC was added and the maximum of the volume pinning force was found at higher fields in in situ synthesized materials than in ex situ sintered samples. We attribute the observed changes to Mg–B–O oxygen-enriched regions and grains of higher magnesium borides in the MgB2 matrix. High-temperature processed materials demonstrated mainly point or mixed pinning while grain boundary pinning dominated after low-temperature synthesis
    corecore