4,048 research outputs found

    Ultrashort pulses and short-pulse equations in (2+1)(2+1)-dimensions

    Full text link
    In this paper, we derive and study two versions of the short pulse equation (SPE) in (2+1)(2+1)-dimensions. Using Maxwell's equations as a starting point, and suitable Kramers-Kronig formulas for the permittivity and permeability of the medium, which are relevant, e.g., to left-handed metamaterials and dielectric slab waveguides, we employ a multiple scales technique to obtain the relevant models. General properties of the resulting (2+1)(2+1)-dimensional SPEs, including fundamental conservation laws, as well as the Lagrangian and Hamiltonian structure and numerical simulations for one- and two-dimensional initial data, are presented. Ultrashort 1D breathers appear to be fairly robust, while rather general two-dimensional localized initial conditions are transformed into quasi-one-dimensional dispersing waveforms

    Distributed Formal Concept Analysis Algorithms Based on an Iterative MapReduce Framework

    Get PDF
    While many existing formal concept analysis algorithms are efficient, they are typically unsuitable for distributed implementation. Taking the MapReduce (MR) framework as our inspiration we introduce a distributed approach for performing formal concept mining. Our method has its novelty in that we use a light-weight MapReduce runtime called Twister which is better suited to iterative algorithms than recent distributed approaches. First, we describe the theoretical foundations underpinning our distributed formal concept analysis approach. Second, we provide a representative exemplar of how a classic centralized algorithm can be implemented in a distributed fashion using our methodology: we modify Ganter's classic algorithm by introducing a family of MR* algorithms, namely MRGanter and MRGanter+ where the prefix denotes the algorithm's lineage. To evaluate the factors that impact distributed algorithm performance, we compare our MR* algorithms with the state-of-the-art. Experiments conducted on real datasets demonstrate that MRGanter+ is efficient, scalable and an appealing algorithm for distributed problems.Comment: 17 pages, ICFCA 201, Formal Concept Analysis 201

    Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories

    Full text link
    Dynamical equations are formulated and a numerical study is provided for self-oscillatory model systems based on the triple linkage hinge mechanism of Thurston -- Weeks -- Hunt -- MacKay. We consider systems with holonomic mechanical constraint of three rotators as well as systems, where three rotators interact by potential forces. We present and discuss some quantitative characteristics of the chaotic regimes (Lyapunov exponents, power spectrum). Chaotic dynamics of the models we consider are associated with hyperbolic attractors, at least, at relatively small supercriticality of the self-oscillating modes; that follows from numerical analysis of the distribution for angles of intersection of stable and unstable manifolds of phase trajectories on the attractors. In systems based on rotators with interacting potential the hyperbolicity is violated starting from a certain level of excitation.Comment: 30 pages, 18 figure

    On the limited amplitude resolution of multipixel Geiger-mode APDs

    Full text link
    The limited number of active pixels in a Geiger-mode Avalanche Photodiode (G-APD) results not only in a non-linearity but also in an additional fluctuation of its response. Both these effects are taken into account to calculate the amplitude resolution of an ideal G-APD, which is shown to be finite. As one of the consequences, the energy resolution of a scintillation detector based on a G-APD is shown to be limited to some minimum value defined by the number of pixels in the G-APD.Comment: 5 pages, 3 figure

    Electron Mass Operator in a Strong Magnetic Field and Dynamical Chiral Symmetry Breaking

    Get PDF
    The electron mass operator in a strong magnetic field is calculated. The contribution of higher Landau levels of virtual electrons, along with the ground Landau level, is shown to be essential in the leading log approximation. The effect of the electron dynamical mass generation by a magnetic field is investigated. In a model with N charged fermions, it is shown that some critical number N_{cr} exists for any value of the electromagnetic coupling constant alpha, such that the fermion dynamical mass is generated with a doublet splitting for N < N_{cr}, and the dynamical mass does not arise at all for N > N_{cr}, thus leaving the chiral symmetry unbroken.Comment: 4 pages, REVTEX4, 3 figure

    Antiphase dynamics in a multimode semiconductor laser with optical injection

    Get PDF
    A detailed experimental study of antiphase dynamics in a two-mode semiconductor laser with optical injection is presented. The device is a specially designed Fabry-Perot laser that supports two primary modes with a THz frequency spacing. Injection in one of the primary modes of the device leads to a rich variety of single and two-mode dynamical scenarios, which are reproduced with remarkable accuracy by a four dimensional rate equation model. Numerical bifurcation analysis reveals the importance of torus bifurcations in mediating transitions to antiphase dynamics and of saddle-node of limit cycle bifurcations in switching of the dynamics between single and two-mode regimes.Comment: 7 pages, 9 figure

    Universal behavior in populations composed of excitable and self-oscillatory elements

    Get PDF
    We study the robustness of self-sustained oscillatory activity in a globally coupled ensemble of excitable and oscillatory units. The critical balance to achieve collective self-sustained oscillations is analytically established. We also report a universal scaling function for the ensemble's mean frequency. Our results extend the framework of the `Aging Transition' [Phys. Rev. Lett. 93, 104101 (2004)] including a broad class of dynamical systems potentially relevant in biology.Comment: 4 pages; Changed titl

    Molecular-dynamics investigation of nanoburnishing process

    Get PDF
    It is well known that the burnishing process affects the surface characteristic, namely: surface roughness, surface hardness, wear resistance, fatigue resistance and increased maximum residual stress in compression. Unfortunately we still far from full understanding what parameters and mechanisms are responsible for the certain surface modification. That is why methods of computer modeling can be considered as useful tool to investigate surface changing during contact interaction as well as burnishing process. It is more essential if we consider processes are taking place at atomic scale level. In the paper we try to reproduce the details of burnishing process at nano-scale level. To investigate features of surface treatment we use the molecular dynamics simulation. Various pure crystalline materials were considered. Results of our modeling are very close to the experimental observatio

    TLM modeling and system identification of optimized antenna structures

    Get PDF
    The transmission line matrix (TLM) method in conjunction with the genetic algorithm (GA) is presented for the bandwidth optimization of a low profile patch antenna. The optimization routine is supplemented by a system identification (SI) procedure. By the SI the model parameters of the structure are estimated which is used for a reduction of the total TLM simulation time. The SI utilizes a new stability criterion of the physical poles for the parameter extraction

    Strong Equivalence Relations for Iterated Models

    Full text link
    The Iterated Immediate Snapshot model (IIS), due to its elegant geometrical representation, has become standard for applying topological reasoning to distributed computing. Its modular structure makes it easier to analyze than the more realistic (non-iterated) read-write Atomic-Snapshot memory model (AS). It is known that AS and IIS are equivalent with respect to \emph{wait-free task} computability: a distributed task is solvable in AS if and only if it solvable in IIS. We observe, however, that this equivalence is not sufficient in order to explore solvability of tasks in \emph{sub-models} of AS (i.e. proper subsets of its runs) or computability of \emph{long-lived} objects, and a stronger equivalence relation is needed. In this paper, we consider \emph{adversarial} sub-models of AS and IIS specified by the sets of processes that can be \emph{correct} in a model run. We show that AS and IIS are equivalent in a strong way: a (possibly long-lived) object is implementable in AS under a given adversary if and only if it is implementable in IIS under the same adversary. %This holds whether the object is one-shot or long-lived. Therefore, the computability of any object in shared memory under an adversarial AS scheduler can be equivalently investigated in IIS
    corecore