10 research outputs found
Tunka-Grande array for high-energy gamma-ray astronomy and cosmic-ray physics: preliminary results.
n/
Recommended from our members
Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3.
Human Enhancer of Zeste homolog (Ezh2) is a histone lysine methyltransferase (HKMT) associated with transcriptional repression. Ezh2 is present in several distinct complexes, one of which, PRC2, we characterized previously. Here we report an additional Ezh2 complex, PRC3. We show that the Ezh2 complexes exhibit differential targeting of specific histones for lysine methylation dependent upon the context of the histone substrates. This differential targeting is a function of the associated Eed protein within each complex. We found that Eed protein is present in four isoforms, which represent alternate translation start site usage from the same mRNA. These Eed isoforms selectively associate with distinct Ezh2-containing complexes with resultant differential targeting of their associated HKMT activity toward histone H3-K27 or histone H1-K26. Our data provide evidence for a novel mechanism regulating the substrate specificity of a chromatin-modifying enzyme through disparate translational products of a regulatory subunit
Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein
Enhancer of Zeste [E(z)] is a Polycomb-group transcriptional repressor and one of the founding members of the family of SET domain-containing proteins. Several SET-domain proteins possess intrinsic histone methyltransferase (HMT) activity. However, recombinant E(z) protein was found to be inactive in a HMT assay. Here we report the isolation of a multiprotein E(z) complex that contains extra sex combs, suppressor of zeste-12 [Su(z)12], and the histone binding proteins RbAp46/RbAp48. This complex, which we termed Polycomb repressive complex (PRC) 2, possesses HMT activity with specificity for Lys 9 (K9) and Lys 27 (K27) of histone H3. The HMT activity of PRC2 is dependent on an intact SET domain in the E(z) protein. We hypothesize that transcriptional repression by the E(z) protein involves methylation-dependent recruitment of PRC1. The presence of Su(z)12, a strong suppressor of position effect variegation, in PRC2 suggests that PRC2 may play a widespread role in heterochromatin-mediated silencing
Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27
Polycomb group (PcG) complexes 2 and 3 are involved in transcriptional silencing. These complexes contain a histone lysine methyltransferase (HKMT) activity that targets different lysine residues on histones H1 or H3 in vitro. However, it is not known if these histones are methylation targets in vivo because the human PRC2/3 complexes have not been studied in the context of a natural promoter because of the lack of known target genes. Here we report the use of RNA expression arrays and CpG-island DNA arrays to identify and characterize human PRC2/3 target genes. Using oligonucleotide arrays, we first identified a cohort of genes whose expression changes upon siRNA-mediated removal of Suz12, a core component of PRC2/3, from colon cancer cells. To determine which of the putative target genes are directly bound by Suz12 and to precisely map the binding of Suz12 to those promoters, we combined a high-resolution chromatin immunoprecipitation (ChIP) analysis with custom oligonucleotide promoter arrays. We next identified additional putative Suz12 target genes by using ChIP coupled to CpG-island microarrays. We showed that HKMT-Ezh2 and Eed, two other components of the PRC2/3 complexes, colocalize to the target promoters with Suz12. Importantly, recruitment of Suz12, Ezh2 and Eed to target promoters coincides with methylation of histone H3 on Lys 27
Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation.
Changes in the substrate specificities of factors that irreversibly modify the histone components of chromatin are expected to have a profound effect on gene expression through epigenetics. Ezh2 is a histone-lysine methyltransferase with activity dependent on its association with other components of the Polycomb Repressive Complexes 2 and 3 (PRC2/3). Ezh2 levels are increasingly elevated during prostate cancer progression. Other PRC2/3 components also are elevated in cancer cells. Overexpression of Ezh2 in tissue culture promotes formation of a previously undescribed PRC complex, PRC4, that contains the NAD+-dependent histone deacetylase SirT1 and isoform 2 of the PRC component Eed. Eed2 is expressed in cancer and undifferentiated embryonic stem (ES) cells but is undetectable in normal and differentiated ES cells. The distinct PRCs exhibit differential histone substrate specificities. These findings suggest that formation of a transformation-specific PRC complex may have a major role in resetting patterns of gene expression by regulating chromatin structure
Recommended from our members
Steps toward understanding the inheritance of repressive methyl-lysine marks in histones.
RBP1 Recruits the mSIN3-Histone Deacetylase Complex to the Pocket of Retinoblastoma Tumor Suppressor Family Proteins Found in Limited Discrete Regions of the Nucleus at Growth Arrest
Retinoblastoma (RB) tumor suppressor family pocket proteins induce cell cycle arrest by repressing transcription of E2F-regulated genes through both histone deacetylase (HDAC)-dependent and -independent mechanisms. In this study we have identified a stable complex that accounts for the recruitment of both repression activities to the pocket. One component of this complex is RBP1, a known pocket-binding protein that exhibits both HDAC-dependent and -independent repression functions. RB family proteins were shown to associate via the pocket with previously identified mSIN3-SAP30-HDAC complexes containing exclusively class I HDACs. Such enzymes do not interact directly with RB family proteins but rather utilize RBP1 to target the pocket. This mechanism was shown to account for the majority of RB-associated HDAC activity. We also show that in quiescent normal human cells this entire RBP1-mSIN3-SAP30-HDAC complex colocalizes with both RB family members and E2F4 in a limited number of discrete regions of the nucleus that in other studies have been shown to represent the initial origins of DNA replication following growth stimulation. These results suggest that RB family members, at least in part, drive exit from the cell cycle by recruitment of this HDAC complex via RBP1 to repress transcription from E2F-dependent promoters and possibly to alter chromatin structure at DNA origins