3,833 research outputs found

    Development of Circularly Polarized Synthetic Aperture Radar Sensor mounted on Unmanned Aerial Vehicle

    Get PDF
    This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that is expected to reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping. Especially for Indonesia which is the largest archipelago country in the world, the need for surface mapping and monitoring is demanding.  Keywords: synthetic aperture radar, circular polarization, microstrip antenn

    Using ocean-glint scattered sunlight as a diagnostic tool for satellite remote sensing of greenhouse gases

    Get PDF
    International audienceSpectroscopic measurements of sunlight backscattered by the Earth's surface is a technique widely used for remote sensing of atmospheric constituent concentrations from space. Thereby, remote sensing of greenhouse gases poses particularly challenging accuracy requirements for instrumentation and retrieval algorithms which, in general, suffer from various error sources. Here, we investigate a method that helps disentangle sources of error for observations of sunlight backscattered from the glint spot on the ocean surface. The method exploits the backscattering characteristics of the ocean surface, which is bright for glint geometry but dark for off-glint angles. This property allows for identifying a set of clean scenes where light scattering due to particles in the atmosphere is negligible such that uncertain knowledge of the lightpath can be excluded as a source of error. We apply the method to more than 3 yr of ocean-glint measurements by the Thermal And Near infrared Sensor for carbon Observation (TANSO) Fourier Transform Spectrometer (FTS) onboard the Greenhouse Gases Observing Satellite (GOSAT), which aims at measuring carbon dioxide (CO2) and methane (CH4) concentrations. The proposed method is able to clearly monitor recent improvements in the instrument calibration of the oxygen (O2) A-band channel and suggests some residual uncertainty in our knowledge about the instrument. We further assess the consistency of CO2 retrievals from several absorption bands between 6400 cm-1(1565 nm) and 4800 cm-1(2100 nm) and find that the absorption bands commonly used for monitoring of CO2 dry air mole fractions from GOSAT allow for consistency better than 1.5 ppm. Usage of other bands reveals significant inconsistency among retrieved CO2 concentrations pointing at inconsistency of spectroscopic parameters. © 2013 Author(s)

    On-site underground background measurements for the KASKA reactor-neutrino experiment

    Get PDF
    On-site underground background measurements were performed for the planned reactor-neutrino oscillation experiment KASKA at Kashiwazaki-Kariwa nuclear power station in Niigata, Japan. A small-diameter boring hole was excavated down to 70m underground level, and a detector unit for Îł\gamma-ray and cosmic-muon measurements was placed at various depths to take data. The data were analyzed to obtain abundance of natural radioactive elements in the surrounding soil and rates of cosmic muons that penetrate the overburden. The results will be reflected in the design of the KASKA experiment.Comment: 9 pages, 7 figures, final version for publication. Table 1 and Fig.5 have change

    Toward accurate CO_2 and CH_4 observations from GOSAT

    Get PDF
    The column-average dry air mole fractions of atmospheric carbon dioxide and methane (X_(CO_2) and X_(CH_4)) are inferred from observations of backscattered sunlight conducted by the Greenhouse gases Observing SATellite (GOSAT). Comparing the first year of GOSAT retrievals over land with colocated ground-based observations of the Total Carbon Column Observing Network (TCCON), we find an average difference (bias) of −0.05% and −0.30% for X_(CO_2) and X_(CH_4) with a station-to-station variability (standard deviation of the bias) of 0.37% and 0.26% among the 6 considered TCCON sites. The root-mean square deviation of the bias-corrected satellite retrievals from colocated TCCON observations amounts to 2.8 ppm for X_(CO_2) and 0.015 ppm for X_(CH_4). Without any data averaging, the GOSAT records reproduce general source/sink patterns such as the seasonal cycle of X_(CO_2) suggesting the use of the satellite retrievals for constraining surface fluxes

    The impact of spectral resolution on satellite retrieval accuracy of CO_2 and CH_4

    Get PDF
    The Fourier-transform spectrometer on board the Japanese GOSAT (Greenhouse gases Observing SATellite) satellite offers an excellent opportunity to study the impact of instrument resolution on retrieval accuracy of CO_2 and CH_4. This is relevant to further improve retrieval accuracy and to optimize the cost–benefit ratio of future satellite missions for the remote sensing of greenhouse gases. To address this question, we degrade GOSAT measurements with a spectral resolution of ≈ 0.24 cm^(−1) step by step to a resolution of 1.5 cm^(−1). We examine the results by comparing relative differences at various resolutions, by referring the results to reference values from the Total Carbon Column Observing Network (TCCON), and by calculating and inverting synthetic spectra for which the true CO_2 and CH_4 columns are known. The main impacts of degrading the spectral resolution are reproduced for all approaches based on GOSAT measurements; pure forward model errors identified with simulated measurements are much smaller. For GOSAT spectra, the most notable effect on CO_2 retrieval accuracy is the increase of the standard deviation of retrieval errors from 0.7 to 1.0% when the spectral resolution is reduced by a factor of six. The retrieval biases against atmospheric water abundance and air mass become stronger with decreasing resolution. The error scatter increase for CH_4 columns is less pronounced. The selective degradation of single spectral windows demonstrates that the retrieval accuracy of CO_2 and CH_4 is dominated by the spectral range where the absorption lines of the target molecule are located. For both GOSAT and synthetic measurements, retrieval accuracy decreases with lower spectral resolution for a given signal-to-noise ratio, suggesting increasing interference errors

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb−1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC
    • 

    corecore