33 research outputs found

    Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA

    Get PDF
    Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (∼5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis

    How peri-urban areas can strengthen animal populations within cities: a modeling approach

    No full text
    We explore the extent to which inner-city fauna can be enhanced by source areas in peri-urban zones as a response to a decreasing quality and size of green habitats within cities. The objectives were to get a better understanding of the interaction between animal populations of urban and peri-urban areas, and the role of urban green structures within this relationship, and to find out the extent to which peri-urban areas can contribute to urban animal populations. We illustrate the idea of peri-urban support by using a simulation model for individual animal movement, applied in a particular case-study with butterflies as model species. Results show differences in accessibility of inner-city areas between model butterfly species that differ in mobility. The impact of peri-urban individuals on populations of inner-city habitats differed among several peri-urban source-scenarios: the enlargement of the inner-city butterfly population by peri-urban individuals was determined as 7¿36% for `moderate dispersers¿ and 19¿56% for `good dispersers¿. Results also show that well-connected habitat patches within existing urban green structures were more likely to be visited by peri-urban individuals than isolated habitat patches. We conclude that peri-urban nature areas, if large enough, can have a potentially positive influence on the presence of fauna in inner-city neighborhoods. In addition, results suggest that connectivity between inner-city and peri-urban habitat patches enhances contribution of peri-urban migrants to inner-city populations. By providing a range of different habitats, from inner-city up to peri-urban area, moderately mobile habitat specialists could better compete against the small set of successful habitat generalists that are increasing in urban environments all over the world
    corecore