16 research outputs found

    Resveratrol inhibits PDGF receptor mitogenic signaling in mesangial cells: role of PTP1B

    No full text
    Mesangioproliferative glomerulonephritis is associated with overactive PDGF receptor signal transduction. We show that the phytoalexin resveratrol dose dependently inhibits PDGF-induced DNA synthesis in mesangial cells with an IC50 of 10 μM without inducing apoptosis. Remarkably, the increased SIRT1 deacetylase activity induced by resveratrol was not necessary for this inhibitory effect. Resveratrol significantly blocked PDGF-stimulated c-Src and Akt kinase activation, resulting in reduced cyclin D1 expression and attenuated pRb phosphorylation and cyclin-dependent kinase-2 (CDK2) activity. Furthermore, resveratrol inhibited PDGFR phosphorylation at the PI 3 kinase and Grb-2 binding sites tyrosine-751 and tyrosine-716, respectively. This deficiency in PDGFR phosphorylation resulted in significant inhibition of PI 3 kinase and Erk1/2 MAPK activity. Interestingly, resveratrol increased the activity of protein tyrosine phosphatase PTP1B, which dephosphorylates PDGF-stimulated phosphorylation at tyrosine-751 and tyrosine-716 on PDGFR with concomitant reduction in Akt and Erk1/2 kinase activity. PTP1B significantly inhibited PDGF-induced DNA synthesis without inducing apoptosis. These results for the first time provide evidence that the stilbene resveratrol targets PTP1B to inhibit PDGFR mitogenic signaling.—Venkatesan, B., Ghosh-Choudhury, N., Das, F., Mahimainathan, L., Kamat, A., Kasinath, B. S., Abboud, H. E., Choudhury, G. G. Resveratrol inhibits PDGF receptor mitogenic signaling in mesangial cells: role of PTP1B

    In

    No full text

    Differential effects of resveratrol on androgen-responsive LNCaP human prostate cancer cells in vitro and in vivo

    No full text
    Resveratrol is a phytochemical that has been under consideration for use as a prostate cancer chemopreventive agent. However, the efficacy, as well as the mechanisms of action of resveratrol on prostate cancer prevention, remains largely unknown. This study seeks to address these questions and examine the cancer preventive effects of resveratrol using complementary human LNCaP prostate cancer cell culture and xenograft models. In cultured LNCaP cells, we found that resveratrol inhibited cell growth. The growth inhibitory effects of resveratrol appeared to be through modulation of both androgen- and estrogen-mediated events. Global gene expression analysis using microarrays identified androgen-responsive genes as a group of genes universally affected by resveratrol in LNCaP cells in vitro. The effect of resveratrol on expression of these genes appeared to be through inhibition of both androgen- and estrogen-mediated transcription. In a xenograft model, resveratrol delayed LNCaP tumor growth and inhibited expression of a marker for steroid hormone responses. However, exposure to resveratrol also led to increased angiogenesis and inhibition of apoptosis in the xenograft. In summary, resveratrol may act through modulation of steroid hormone-dependent pathways to inhibit prostate cancer cell growth in both culture and xenografts, but exposure in vivo may be of concern

    Technological aspects of by-product utilization

    No full text
    Several by-products are generated by de-stemming, pressing, and decantation steps during the wine making process. These materials are very rich in biodegradable organic matter and can support microbial growth and emission of environmentally undesirable odors and compounds. The wine residues, if not treated efficiently, have the potential to initiate environmental hazards ranging from surface and groundwater pollution to foul odors.The authors acknowledge funding received from the New Zealand Ministry for Environment (Community Environment Fund and Waste Minimisation Fund, Deed Number 20398), and the Sustainable Farm Fund (Project Number 09/099). This work is part of the New Zealand Grape and Wine Research programme, a joint investment by the Plant and Food Research and NZ Winegrowers
    corecore