39 research outputs found

    Global Advances in Tomato Virome Research: Current Status and the Impact of High-Throughput Sequencing

    Get PDF
    Viruses cause a big fraction of economically important diseases in major crops, including tomato. In the past decade (2011–2020), many emerging or re-emerging tomato-infecting viruses were reported worldwide. In this period, 45 novel viral species were identified in tomato, 14 of which were discovered using high-throughput sequencing (HTS). In this review, we first discuss the role of HTS in these discoveries and its general impact on tomato virome research. We observed that the rate of tomato virus discovery is accelerating in the past few years due to the use of HTS. However, the extent of the post-discovery characterization of viruses is lagging behind and is greater for economically devastating viruses, such as the recently emerged tomato brown rugose fruit virus. Moreover, many known viruses still cause significant economic damages to tomato production. The review of databases and literature revealed at least 312 virus, satellite virus, or viroid species (in 22 families and 39 genera) associated with tomato, which is likely the highest number recorded for any plant. Among those, here, we summarize the current knowledge on the biology, global distribution, and epidemiology of the most important species. Increasing knowledge on tomato virome and employment of HTS to also study viromes of surrounding wild plants and environmental samples are bringing new insights into the understanding of epidemiology and ecology of tomato-infecting viruses and can, in the future, facilitate virus disease forecasting and prevention of virus disease outbreaks in tomato

    Semi-artificial datasets as a resource for validation of bioinformatics pipelines for plant virus detection

    Get PDF
    The widespread use of High-Throughput Sequencing (HTS) for detection of plant viruses and sequencing of plant virus genomes has led to the generation of large amounts of data and of bioinformatics challenges to process them. Many bioinformatics pipelines for virus detection are available, making the choice of a suitable one difficult. A robust benchmarking is needed for the unbiased comparison of the pipelines, but there is currently a lack of reference datasets that could be used for this purpose. We present 7 semi-artificial datasets composed of real RNA-seq datasets from virus-infected plants spiked with artificial virus reads. Each dataset addresses challenges that could prevent virus detection. We also present 3 real datasets showing a challenging virus composition as well as 8 completely artificial datasets to test haplotype reconstruction software. With these datasets that address several diagnostic challenges, we hope to encourage virologists, diagnosticians and bioinformaticians to evaluate and benchmark their pipeline(s)

    Tomato brown rugose fruit virus in aqueous environments – survival and significance of water-mediated transmission

    Get PDF
    Tomato brown rugose fruit virus (ToBRFV) has recently emerged as a major disease of tomatoes and peppers. ToBRFV is a seed- and contact-transmitted virus. In Slovenia, ToBRFV RNA was detected in samples of wastewater, river, and water used to irrigate plants. Even though the source of detected RNA could not be clearly established, this raised the question of the significance of the detection of ToBRFV in water samples and experimental studies were performed to address this question. The data presented here confirm that the release of virus particles from the roots of infected plants is a source of infectious ToBRFV particles in water and that the virus can remain infective up to four weeks in water stored at room temperature, while its RNA can be detected for much longer. These data also indicate that irrigation with ToBRFV-contaminated water can lead to plant infection. In addition, it has been shown that ToBRFV circulated in drain water in commercial tomato greenhouses from other European countries and that an outbreak of ToBRFV can be detected by regular monitoring of drain water. A simple method for concentrating ToBRFV from water samples and a comparison of the sensitivity of different methods, including the determination of the highest ToBRFV dilution still capable of infecting test plants, were also investigated. The results of our studies fill the knowledge gaps in the epidemiology and diagnosis of ToBRFV, by studying the role of water-mediated transmission, and provide a reliable risk assessment to identify critical points for monitoring and control

    Managing the deluge of newly discovered plant viruses and viroids: an optimized scientific and regulatory framework for their characterization and risk analysis

    Get PDF
    The advances in high-throughput sequencing (HTS) technologies and bioinformatic tools have provided new opportunities for virus and viroid discovery and diagnostics. Hence, new sequences of viral origin are being discovered and published at a previously unseen rate. Therefore, a collective effort was undertaken to write and propose a framework for prioritizing the biological characterization steps needed after discovering a new plant virus to evaluate its impact at different levels. Even though the proposed approach was widely used, a revision of these guidelines was prepared to consider virus discovery and characterization trends and integrate novel approaches and tools recently published or under development. This updated framework is more adapted to the current rate of virus discovery and provides an improved prioritization for filling knowledge and data gaps. It consists of four distinct steps adapted to include a multi-stakeholder feedback loop. Key improvements include better prioritization and organization of the various steps, earlier data sharing among researchers and involved stakeholders, public database screening, and exploitation of genomic information to predict biological properties

    Virome Analysis of Signal Crayfish (<i>Pacifastacus leniusculus</i>) along Its Invasion Range Reveals Diverse and Divergent RNA Viruses

    No full text
    Crayfish are a keystone species of freshwater ecosystems and a successful invasive species. However, their pathogens, including viruses, remain understudied. The aim of this study was to analyze the virome of the invasive signal crayfish (Pacifastacus leniusculus) and to elucidate the potential differences in viral composition and abundance along its invasion range in the Korana River, Croatia. By the high-throughput sequencing of ribosomal RNA, depleted total RNA isolated from the crayfish hepatopancreas, and subsequent sequence data analysis, we identified novel and divergent RNA viruses, including signal crayfish-associated reo-like, hepe-like, toti-like, and picorna-like viruses, phylogenetically related to viruses previously associated with crustacean hosts. The patterns of reads abundance and calculated nucleotide diversities of the detected viral sequences varied along the invasion range. This could indicate the possible influence of different factors and processes on signal crayfish virome composition: e.g., the differences in signal crayfish population density, the non-random dispersal of host individuals from the core to the invasion fronts, and the transfer of viruses from the native co-occurring and phylogenetically related crayfish species. The study reveals a high, previously undiscovered diversity of divergent RNA viruses associated with signal crayfish, and sets foundations for understanding the potential risk of virus transmissions as a result of this invader’s dispersal

    Identification of epigenetically regulated genes involved in plant-virus interaction and their role in virus-triggered induced resistance

    Get PDF
    Abstract Background Plant responses to a wide range of stresses are known to be regulated by epigenetic mechanisms. Pathogen-related investigations, particularly against RNA viruses, are however scarce. It has been demonstrated that Arabidopsis thaliana plants defective in some members of the RNA-directed DNA methylation (RdDM) or histone modification pathways presented differential susceptibility to the turnip mosaic virus. In order to identify genes directly targeted by the RdDM-related RNA Polymerase V (POLV) complex and the histone demethylase protein JUMONJI14 (JMJ14) during infection, the transcriptomes of infected mutant and control plants were obtained and integrated with available chromatin occupancy data for various epigenetic proteins and marks. Results A comprehensive list of virus-responsive gene candidates to be regulated by the two proteins was obtained. Twelve genes were selected for further characterization, confirming their dynamic regulation during the course of infection. Several epigenetic marks on their promoter sequences were found using in silico data, raising confidence that the identified genes are actually regulated by epigenetic mechanisms. The altered expression of six of these genes in mutants of the methyltransferase gene CURLY LEAF and the histone deacetylase gene HISTONE DEACETYLASE 19 suggests that some virus-responsive genes may be regulated by multiple coordinated epigenetic complexes. A temporally separated multiple plant virus infection experiment in which plants were transiently infected with one virus and then infected by a second one was designed to investigate the possible roles of the identified POLV- and JMJ14-regulated genes in wild-type (WT) plants. Plants that had previously been stimulated with viruses were found to be more resistant to subsequent virus challenge than control plants. Several POLV- and JMJ14-regulated genes were found to be regulated in virus induced resistance in WT plants, with some of them poisoned to be expressed in early infection stages. Conclusions A set of confident candidate genes directly regulated by the POLV and JMJ14 proteins during virus infection was identified, with indications that some of them may be regulated by multiple epigenetic modules. A subset of these genes may also play a role in the tolerance of WT plants to repeated, intermittent virus infections

    Evolution of antiviral responses in plants

    No full text
    Trabajo presentado a la XVI Reunión de Biología Molecular de Plantas-Meeting of Plant Molecular Biology (RBMP) celebrada en Sevilla entre el 14 y el 16 de diciembre de 2022.Viruses are intracellular obligate parasites that coexist with most, if not all, living organisms. The frst ever discovered virus was the Tobacco mosaic virus (TMV) during late 19th and early 20th centuries. In plants, most of the currently known virus-host interactions are detrimental for the host, afecting plant growth and ftness, and hence pathogenic. In turn, plants have developed sophisticated mechanisms to defend themselves against viruses and preserve their cellular homeostasis. RNA silencing is at the core of antiviral immunity and is the target of viral countermeasures such as the production of silencing suppressors that interfere with that defense mechanism. Plant vascular tissues are of key importance in viral life cycle both for viral systemic spread and, in some cases, as obligate habitat. Evolutionary molecular plant-microbe interactions (Evo-MPMI) is an emerging discipline based on comparative studies to track the evolution of plant defense molecular mechanisms. The liverwort Marchantia polymorpha has gained a central role as model organism for those comparative studies. The presence of a functional RNA silencing machinery and the absence of vascular tissues, makes of M. polymorpha an especially attractive organism to study plant-virus interactions. In order to assess the conservation of plant antiviral molecular responses, we have successfully established a Marchantia-virus pathosystem. We have leveraged cell biology, biochemistry and Next Generation sequencing-based approaches to unravel conserved players and processes at the Marchantia-virus interaction. In parallel, we have mined isolated RNA samples from Marchantia plants grown in natural conditions looking for viruses naturally infecting Marchantia. In this communication, we will discuss our fndings and future perspectives.The work in the MoRE group is funded by RYC-2015-19154 (funded by MCIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future”), RTI2018-097262-B-I00 (funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”) and through the “Severo Ochoa Programme for Centres of Excellence in R&D” 2016-2019 (SEV-2015-0533) and 2020-2023 (CEX2019-000902-S) funded by MCIN/AEI/ 10.13039/501100011033 and the CERCA programme from the Generalitat de Catalunya. The work at NIB was funded by Slovenian Research Agency core fnancing P4-0407 and P4-0165With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000902-S

    Metagenomic characterization of parental and production CHO cell lines for detection of adventitious viruses

    No full text
    Viral contamination is a major concern for biological products. Therefore, virus testing of raw materials and cells is essential for the safety of the final product. We used high-throughput sequencing to detect viral-like sequences in selected CHO cell lines. Our aim was to test various approaches of sample preparation, to establish a pipeline for metagenomic analysis and to characterize standard viral metagenome of production and parental CHO cell lines. The comparison of the metagenomics composition of the differently prepared samples showed that among four tested approaches sequencing of ribosomal RNA depleted total RNA is the most promising approach. The metagenomics investigation of one production and three parental CHO cell lines of diverse origin did not indicate the presence of adventitious viral agents in the investigated samples. The study revealed an expected background of virus-like nucleic acids in the samples, which originate from remains of expression vectors, endogenized viral elements and residuals of bacteriophages
    corecore