272 research outputs found
EasyStrata: evaluation and visualization of stratified genome-wide association meta-analysis data
Summary: The R package EasyStrata facilitates the evaluation and visualization of stratified genome-wide association meta-analyses (GWAMAs) results. It provides (i) statistical methods to test and account for between-strata difference as a means to tackle gene-strata interaction effects and (ii) extended graphical features tailored for stratified GWAMA results. The software provides further features also suitable for general GWAMAs including functions to annotate, exclude or highlight specific loci in plots or to extract independent subsets of loci from genome-wide datasets. It is freely available and includes a user-friendly scripting interface that simplifies data handling and allows for combining statistical and graphical functions in a flexible fashion. Availability: EasyStrata is available for free (under the GNU General Public License v3) from our Web site www.genepi-regensburg.de/easystrata and from the CRAN R package repository cran.r-project.org/web/packages/EasyStrata/. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin
Omics-informed CNV calls reduce false-positive rates and improve power for CNV-trait associations
Copy-number variations (CNV) are believed to play an important role in a wide range of complex traits, but discovering such associations remains challenging. While whole-genome sequencing (WGS) is the gold-standard approach for CNV detection, there are several orders of magnitude more samples with available genotyping microarray data. Such array data can be exploited for CNV detection using dedicated software (e.g., PennCNV); however, these calls suffer from elevated false-positive and -negative rates. In this study, we developed a CNV quality score that weights PennCNV calls (pCNVs) based on their likelihood of being true positive. First, we established a measure of pCNV reliability by leveraging evidence from multiple omics data (WGS, transcriptomics, and methylomics) obtained from the same samples. Next, we built a predictor of omics-confirmed pCNVs, termed omics-informed quality score (OQS), using only PennCNV software output parameters. Promisingly, OQS assigned to pCNVs detected in close family members was up to 35% higher than the OQS of pCNVs not carried by other relatives (p < 3.0 x 10(-90)), outperforming other scores. Finally, in an association study of four anthropometric traits in 89,516 Estonian Biobank samples, the use of OQS led to a relative increase in the trait variance explained by CNVs of up to 56% compared with published quality filtering methods or scores. Overall, we put forward a flexible framework to improve any CNV detection method leveraging multi-omics evidence, applied it to improve PennCNV calls, and demonstrated its utility by improving the statistical power for downstream association analyses.Peer reviewe
GenoShare: Supporting Privacy-Informed Decisions for Sharing Exact Genomic Data
The academic community has proposed many solutions to address the privacy concerns associated with genomic-data sharing. However, practitioners have not adopted these solutions due to their impact on the data utility. To address this problem, we introduce GenoShare, a framework that helps practitioners to make informed decisions about the sharing of exact genomic data by providing means to systematically reason about the risk of disclosing privacy-sensitive attributes (e.g., health status, kinship, physical traits). We instantiate GenoShare with three of the most important genomics-oriented inference attacks, and demonstrate its capability to detect potential leakage of sensitive attributes using real data from the 1000 Genomes Project
Genomic architecture and prediction of censored time-to-event phenotypes with a Bayesian genome-wide analysis
While recent advancements in computation and modelling have improved the analysis of complex traits, our understanding of the genetic basis of the time at symptom onset remains limited. Here, we develop a Bayesian approach (BayesW) that provides probabilistic inference of the genetic architecture of age-at-onset phenotypes in a sampling scheme that facilitates biobank-scale time-to-event analyses. We show in extensive simulation work the benefits BayesW provides in terms of number of discoveries, model performance and genomic prediction. In the UK Biobank, we find many thousands of common genomic regions underlying the age-at-onset of high blood pressure (HBP), cardiac disease (CAD), and type-2 diabetes (T2D), and for the genetic basis of onset reflecting the underlying genetic liability to disease. Age-at-menopause and age-at-menarche are also highly polygenic, but with higher variance contributed by low frequency variants. Genomic prediction into the Estonian Biobank data shows that BayesW gives higher prediction accuracy than other approaches
Limited evidence for blood eQTLs in human sexual dimorphism
The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits.
To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs.
Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection.
Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs
A genetic validation study reveals a role of vitamin D metabolism in the response to interferon-alfa-based therapy of chronic hepatitis C
Background: To perform a comprehensive study on the relationship between vitamin D metabolism and the response to interferon-α-based therapy of chronic hepatitis C.
Methodology/Principal Findings: Associations between a functionally relevant polymorphism in the gene encoding the vitamin D 1α-hydroxylase (CYP27B1-1260 rs10877012) and the response to treatment with pegylated interferon-α (PEG-IFN-α) and ribavirin were determined in 701 patients with chronic hepatitis C. In addition, associations between serum concentrations of 25-hydroxyvitamin D3 (25[OH]D3) and treatment outcome were analysed. CYP27B1-1260 rs10877012 was found to be an independent predictor of sustained virologic response (SVR) in patients with poor-response IL28B genotypes (15% difference in SVR for rs10877012 genotype AA vs. CC, p = 0.02, OR = 1.52, 95% CI = 1.061–2.188), but not in patients with favourable IL28B genotype. Patients with chronic hepatitis C showed a high prevalence of vitamin D insufficiency (25[OH]D3<20 ng/mL) during all seasons, but 25(OH)D3 serum levels were not associated with treatment outcome.
Conclusions/Significance: Our study suggests a role of bioactive vitamin D (1,25[OH]2D3, calcitriol) in the response to treatment of chronic hepatitis C. However, serum concentration of the calcitriol precursor 25(OH)D3 is not a suitable predictor of treatment outcome
The genetic etiology of periodic limb movement in sleep
Study Objectives Periodic limb movement in sleep is a common sleep phenotype characterized by repetitive leg movements that occur during or before sleep. We conducted a genome-wide association study (GWAS) of periodic limb movements in sleep (PLMS) using a joint analysis (i.e., discovery, replication, and joint meta-analysis) of four cohorts (MrOS, the Wisconsin Sleep Cohort Study, HypnoLaus, and MESA), comprised of 6843 total subjects. Methods The MrOS study and Wisconsin Sleep Cohort Study (N = 1745 cases) were used for discovery. Replication in the HypnoLaus and MESA cohorts (1002 cases) preceded joint meta-analysis. We also performed LD score regression, estimated heritability, and computed genetic correlations between potentially associated traits such as restless leg syndrome (RLS) and insomnia. The causality and direction of the relationships between PLMS and RLS was evaluated using Mendelian randomization. Results We found 2 independent loci were significantly associated with PLMS: rs113851554 (p = 3.51 x 10(-12), beta = 0.486), an SNP located in a putative regulatory element of intron eight of MEIS1 (2p14);and rs9369062 (p = 3.06 x 10(-22), beta = 0.2093), a SNP located in the intron region of BTBD9 (6p12);both of which were also lead signals in RLS GWAS. PLMS is genetically correlated with insomnia, risk of stroke, and RLS, but not with iron deficiency. Pleiotropy adjusted Mendelian randomization analysis identified a causal effect of RLS on PLMS. Conclusions Because PLMS is more common than RLS, PLMS may have multiple causes and additional studies are needed to further validate these findings
Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis
Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We find 11 genome-wide-significant (
- …