982 research outputs found

    Background studies and shielding effects for the TPC detector of the CAST experiment

    Get PDF
    Sunset solar axions traversing the intense magnetic field of the CERN Axion Solar Telescope (CAST) experiment may be detected in a Time Projection Chamber (TPC) detector, as X-rays signals. These signals could be masked, however, by the inhomogeneous background of materials in the experimental site. A detailed analysis, based on the detector characteristics, the background radiation at the CAST site, simulations and experimental results, has allowed us to design a shielding which reduces the background level by a factor of ~4 compared to the detector without shielding, depending on its position, in the energy range between 1 and 10 keV. Moreover, this shielding has improved the homogeneity of background measured by the TPC.Comment: 14 pages, 5 figures, accepted in New Journal of Physic

    The X-ray Telescope of CAST

    Get PDF
    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.Comment: 19 pages, 25 figures and images, replaced by the revised version accepted for publication in New Journal of Physic

    Manipulation of FASTQ data with Galaxy

    Get PDF
    Summary: Here, we describe a tool suite that functions on all of the commonly known FASTQ format variants and provides a pipeline for manipulating next generation sequencing data taken from a sequencing machine all the way through the quality filtering steps

    XMM-Newton and INTEGRAL observations of the black hole candidate XTE J1817-330

    Full text link
    The galactic black hole candidate XTE J1817-330 was discovered in outburst by RXTE in January 2006. We present here the results of an XMM-Newton Target of opportunity observation (TOO), performed on 13 March 2006 (44 days after the maximum), and an INTEGRAL observation performed on 15-18 February 2006 (18 days after the maximum). The EPIC-pn camera on-board XMM-Newton was used in the fast read-out Burst mode to avoid photon pile-up, while the RGSs were used in Spectroscopy high count-rate mode. We fit both the XMM-Newton and the INTEGRAL spectra with a two-component model consisting of a thermal accretion disk and a comptonizing hot corona. The soft X-ray spectrum is dominated by an accretion disk component, with a maximum temperature decreasing from 0.96+/-0.04 keV at the time of the INTEGRAL observation to 0.70+/-m0.01 keV on 13 March. The Optical Monitors on board INTEGRAL and XMM-Newton showed the source with magnitudes V: 11.3-11.4, U:15.0-15.1 and UVW1:14.7-14.8. The soft X-ray spectrum, together with the optical and UV data, show a low hydrogen column density towards the source, and several absorption lines, most likely of interstellar origin, are detected in the RGS spectrum: OI K-alpha, OI K-beta, OII, OIII and OVII, which trace both cold and hot components of the ISM. The soft X-ray spectrum indicates the presence of a black hole, with an estimate for the upper limit of the mass of 6.0(+4.0/-2.5) Msun.Comment: Accepted for publication in A&

    Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Get PDF
    In this paper we report chemically resolved measurements of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (>75%). The correlation between OA and an anthropogenic tracer does not necessarily identify the source of the carbon as being anthropogenic but instead suggests a coupling between the anthropogenic and biogenic components in the air mass that might be related to the source of the oxidant and/or the aerosol sulfate. Observations of organosulfates of isoprene and α-pinene provided evidence for the likely importance of aerosol sulfate in spite of neutralized aerosol although acidic plumes might have played a role upwind of the site. This is in contrast to laboratory studies where strongly acidic seed aerosols were needed in order to form these compounds. These compounds together represented only a minor fraction (<1%) of the total OA mass, which may be the result of the neutralized aerosol at the site or because only a small number of organosulfates were quantified. The low contribution of organosulfates to total OA suggests that other mechanisms, e.g. NO_x enhancement of oxidant levels, are likely responsible for the majority of the anthropogenic enhancement of biogenic secondary organic aerosol observed at this site

    The CAST Time Projection Chamber

    Get PDF
    One of the three X-ray detectors of the CAST experiment searching for solar axions is a Time Projection Chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to the detection of the low intensity X-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is safely set during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62 %. Shielding has been installed around the detector, lowering the background level to 4.10 x 10^-5 counts/cm^2/s/keV between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion-photon coupling and mass.Comment: 19 pages, 11 figures and images, submitted to New Journal of Physic

    Background study for the pn-CCD detector of CERN Axion Solar Telescope

    Get PDF
    The CERN Axion Solar Telescope (CAST) experiment searches for axions from the Sun converted into photons with energies up to around 10 keV via the inverse Primakoff effect in the high magnetic field of a superconducting Large Hadron Collider (LHC) prototype magnet. A backside illuminated pn-CCD detector in conjunction with an X-ray mirror optics is one of the three detectors used in CAST to register the expected photon signal. Since this signal is very rare and different background components (environmental gamma radiation, cosmic rays, intrinsic radioactive impurities in the set-up, ...) entangle it, a detailed study of the detector background has been undertaken with the aim to understand and further reduce the background level of the detector. The analysis is based on measured data taken during the Phase I of CAST and on Monte Carlo simulations of different background components. This study will show that the observed background level (at a rate of (8.00+-0.07)10^-5 counts/cm^2/s/keV between 1 and 7 keV) seems to be dominated by the external gamma background due to usual activities at the experimental site, while radioactive impurities in the detector itself and cosmic neutrons could make just smaller contribution.Comment: Comments: 10 pages, 9 figures and images, submitted to Astroparticle Physic

    A hydrodynamically optimized nano-electrospray ionization source and vacuum interface

    Get PDF
    The coupling of atmospheric pressure ionization (API) sources like electrospray ionization (ESI) to vacuum based applications like mass spectrometry (MS) or ion beam deposition (IBD) is done by differential pumping, starting with a capillary or pinhole inlet. Because of its low ion transfer efficiency the inlet represents a major bottleneck for these applications. Here we present a nano-ESI vacuum interface optimized to exploit the hydrodynamic drag of the background gas for collimation and the reduction of space charge repulsion. Up to a space charge limit of 40 nA we observe 100% current transmission through a capillary with an inlet and show by MS and IBD experiments that the transmitted ion beams are well defined and free of additional contamination compared to a conventional interface. Based on computational fluid dynamics modelling and ion transport simulations, we show how the specific shape enhances the collimation of the ion cloud. Mass selected ion currents in the nanoampere range available further downstream in high vacuum open many perspectives for the efficient use of electrospray ion beam deposition (ES-IBD) as a surface coating method
    corecore