459 research outputs found

    Recovery of Protein Structure from Contact Maps

    Get PDF
    We present an efficient algorithm to recover the three dimensional structure of a protein from its contact map representation. First we show that when a physically realizable map is used as target, our method generates a structure whose contact map is essentially similar to the target. Furthermore, the reconstructed and original structures are similar up to the resolution of the contact map representation. Next we use non-physical target maps, obtained by corrupting a physical one; in this case our method essentially recovers the underlying physical map and structure. Hence our algorithm will help to fold proteins, using dynamics in the space of contact maps. Finally we investigate the manner in which the quality of the recovered structure degrades when the number of contacts is reduced.Comment: 27 pages, RevTex, 12 figures include

    Cruelty

    Get PDF

    Evolutionary advantage of cell size control

    Full text link
    We analyze the advantage of cell size control strategies in growing populations under mortality constraints. We demonstrate a general advantage of the adder control strategy in the presence of growth-dependent mortality, and for different size-dependent mortality landscapes. Its advantage stems from epigenetic heritability of cell size, which enables selection to act on the distribution of cell sizes in a population to avoid mortality thresholds and adapt to a mortality landscape

    Importance of chirality and reduced flexibility of protein side chains: A study with square and tetrahedral lattice models

    Full text link
    In simple models side chains are often represented implicitly (e.g., by spin-states) or simplified as one atom. We study side chain effects using square lattice and tetrahedral lattice models, with explicitly side chains of two atoms. We distinguish effects due to chirality and effects due to side chain flexibilities, since residues in proteins are L-residues, and their side chains adopt different rotameric states. Short chains are enumerated exhaustively. For long chains, we sample effectively rare events (eg, compact conformations) and obtain complete pictures of ensemble properties of these models at all compactness region. We find that both chirality and reduced side chain flexibility lower the folding entropy significantly for globally compact conformations, suggesting that they are important properties of residues to ensure fast folding and stable native structure. This corresponds well with our finding that natural amino acid residues have reduced effective flexibility, as evidenced by analysis of rotamer libraries and side chain rotatable bonds. We further develop a method calculating the exact side-chain entropy for a given back bone structure. We show that simple rotamer counting often underestimates side chain entropy significantly, and side chain entropy does not always correlate well with main chain packing. Among compact backbones with maximum side chain entropy, helical structures emerges as the dominating configurations. Our results suggest that side chain entropy may be an important factor contributing to the formation of alpha helices for compact conformations.Comment: 16 pages, 15 figures, 2 tables. Accepted by J. Chem. Phy

    Switching and growth for microbial populations in catastrophic responsive environments

    Get PDF
    Phase variation, or stochastic switching between alternative states of gene expression, is common among microbes, and may be important in coping with changing environments. We use a theoretical model to assess whether such switching is a good strategy for growth in environments with occasional catastrophic events. We find that switching can be advantageous, but only when the environment is responsive to the microbial population. In our model, microbes switch randomly between two phenotypic states, with different growth rates. The environment undergoes sudden "catastrophes", the probability of which depends on the composition of the population. We derive a simple analytical result for the population growth rate. For a responsive environment, two alternative strategies emerge. In the "no switching" strategy, the population maximises its instantaneous growth rate, regardless of catastrophes. In the "switching" strategy, the microbial switching rate is tuned to minimise the environmental response. Which of these strategies is most favourable depends on the parameters of the model. Previous studies have shown that microbial switching can be favourable when the environment changes in an unresponsive fashion between several states. Here, we demonstrate an alternative role for phase variation in allowing microbes to maximise their growth in catastrophic responsive environments.Comment: 9 pages, 10 figures; replaced with revised versio
    • …
    corecore