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Background: Prediction of a protein’s structure from its amino acid sequence
is a key issue in molecular biology. While dynamics, performed in the space of
two-dimensional contact maps, eases the necessary conformational search, it
may also lead to maps that do not correspond to any real three-dimensional
structure. To remedy this, an efficient procedure is needed to reconstruct 
three-dimensional conformations from their contact maps. 

Results: We present an efficient algorithm to recover the three-dimensional
structure of a protein from its contact map representation. We show that when
a physically realizable map is used as target, our method generates a structure
whose contact map is essentially similar to the target. Furthermore, the
reconstructed and original structures are similar up to the resolution of the
contact map representation. Next, we use nonphysical target maps, obtained by
corrupting a physical one; in this case, our method essentially recovers the
underlying physical map and structure. Hence, our algorithm will help to fold
proteins, using dynamics in the space of contact maps. Finally, we investigate
the manner in which the quality of the recovered structure degrades when the
number of contacts is reduced. 

Conclusions: The procedure is capable of assigning quickly and reliably a
three-dimensional structure to a given contact map. It is well suited for use in
parallel with dynamics in contact map space to project a contact map onto its
closest physically allowed structural counterpart.

Introduction
Considerable effort has been devoted to finding ways to
predict a protein’s structure from its known amino acid
sequence A = (a1, a2, … aN). The contact map of a protein
is a particularly useful representation of its structure [1,2].
For a protein of N residues, the contact map is an N × N
matrix S, whose elements are Si,j = 1 if residues i and j are
in contact and Si,j = 0 otherwise. ‘Contact’ can be defined
in various ways; for example, in a recent publication
Mirny and Domany [3] defined contact Si,j = 1 when a pair
of heavy (all but hydrogen) atoms, one from amino acid i
and one from j, whose distance is < 4.5 Å can be found.
Secondary structures are easily detected from the contact
map. α-Helices appear as thick bands along the main
diagonal since they involve contacts between one amino
acid and its four successors. The signatures of parallel or
anti-parallel β-sheets are thin bands, parallel or anti-paral-
lel to the main diagonal. On the other hand, the overall
tertiary structure is not easily discerned. The main idea of
Mirny and Domany [3] was to use this representation to
perform a search, executed in the space of possible
contact maps S, for a fixed sequence A, to identify maps
of low ‘energy’ *(A, S). They defined the energy *(A, S)
as the negative logarithm of the probability that structures
whose contact map is S occur for a protein with the
sequence A; therefore, a map of low energy corresponds
to a highly probable structure.

One of the most problematic aspects of their work was
that by performing an unconstrained search in the space of
contact maps, i.e. freely flipping matrix elements from 1 to
0 and vice versa, one obtains maps of very low energy
which have no physical meaning, since they do not corre-
spond to realizable conformations of a polypeptide chain.
To overcome this problem, Mirny and Domany intro-
duced heuristic restrictions on the possible changes one is
allowed to make to a contact map, arguing that if one starts
with a physically realizable map, the moves allowed by
these restrictive dynamic rules will generate maps that are
also physically realizable. Even though their heuristic
rules did seem to modify the dynamics in the desired way,
there is no rigorous proof that indeed one is always left in
the physical subspace, there is no clear evidence that the
resulting rules are not too restrictive and, finally, the need
to start with a physical fold, copied from a protein of
known structure, may bias the ensuing search and get it
trapped in some local minimum of the energy.

The aim of the present publication is to present a method to
overcome these difficulties. The idea is to provide a test that
can be performed ‘online’ and in parallel with the dynamics
in the space of contact maps which will ‘project’ any map
onto a nearby one that is guaranteed to be in the subspace of
physically realizable maps. That is, for a given target contact
map S, we search for a conformation that a ‘string of beads’
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can take, such that the contact map S′ of our string is similar
(or close) to S. Needless to say, the contact map associated
with a string of beads is, by definition, physical.

This particular aim highlights the difference between what
we are trying to accomplish and the goals of existing
methods [2,4–11]. These methods use various forms of dis-
tance geometry [12,13], supplemented by restricted molec-
ular dynamics [14] or simulated annealing [15], to construct
three-dimensional structures from distance information.
Our method addresses a different problem: how to convert
a possibly ill-defined nonphysical set of contacts to a legiti-
mate one. We should emphasize here the distinction
between a contact map and a distance map. In a contact
map, a minimal amount of information is available — given
a pair of amino acids, we know only whether they are in
contact or not, i.e. only lower and upper bounds on their
separation are given. A distance matrix, on the other hand,
presents real-valued distances between pairs of amino
acids. Therefore, it is considerably harder to reconstruct a
structure from a contact map than from a distance matrix.
Rather than being concerned with obtaining a structure
that is close to a real experimental one, we mainly want to
check whether a contact map S is physically possible or
not, and if not, to propose some S′ that is physical and, at
the same time, is not too different from S. The three-
dimensional structure is in our case a means, rather than an
end. The method has to be fast enough to run in parallel
with the search routine (which uses *(A, S) to identify can-
didate maps S of low energy). Another important require-
ment is to be able to recover contacts that do not belong to
secondary structure elements and may be located far from
the map’s diagonal. Such contacts are important to nail
down the elusive global fold of the protein. We believe
that the main advantage of performing a dynamic search in
the space of contact maps is the ease with which such con-
tacts can be introduced, whereas creating them in a molec-
ular dynamics or in a Monte Carlo procedure of a real
polypeptide chain involves coherent moves of large sec-
tions of the molecule — moves that take a very long time
to perform. To make sure that this advantage is preserved,
our method must be able to efficiently find such conforma-
tions, if they are possible, once a new target contact has
been proposed.

Existing methods are capable of dealing with the noise that
can arise from experimental errors in the distances derived
from NOESY spectra, from uncertainty in the identification
of the pair of atoms that gave rise to a particular distance
signal, or from distances that are assigned to wrong atom
pairs. Typically, in a distance geometry approach, distances
are first filtered by applying triangle inequalities, and then
by some iterative embedding procedure [12,13]. Till now,
to our knowledge, no work has been specifically aimed at
assessing quickly and reliably whether a given set of con-
tacts is physically realizable or not. The main conclusion of

the work of Havel et al. [2] is that it is possible to recon-
struct a structure from the knowledge of the correct set of
contacts. Successive work within the distance geometry
framework, for the reasons explained above, has focused
mainly on the treatment of noise in distance assignment
[7,10]. A comparison with the work of Bohr and co-workers
[6] shows that our method is considerably more robust
against inconsistencies in the assignment of the contacts in
the map. This is to be expected, since we use a stochastic
method whereas Bohr and co-workers use a deterministic
(gradient descent) one; inconsistencies and noise give rise
to multiple minima of the cost function, which are over-
come efficiently by stochastic methods.

We are currently working on combining the method pre-
sented here with dynamics in the space of contact maps.
The results of the combined procedure will be presented
in a future publication. In this paper, we give a detailed
explanation of the method. We show how it works on
native maps of proteins with the number of residues
ranging from N = 56 to N = 581. Success of the algorithm is
measured in terms of the number of contacts recovered
and the root mean square displacements of the recovered
three-dimensional structures from the native ones. We
study the answers given by our algorithm when it faces the
task of finding a structure, using a nonphysical contact
map as its target. As the first test, we added and removed
contacts at random in a physical map and found that the
reconstructed structure did not change by much, i.e. we
could still reconstruct the underlying physical structure.
As a second test, we used the constrained dynamic rules
proposed by Mirny and Domany [3]: starting from an
experimental contact map, we obtained a new map by a
denaturation/renaturation computer experiment. Since the
rules are heuristic, this map is not guaranteed to be physi-
cal. Our reconstruction method projects a nonphysical
map onto one that is close to it and physically allowed. 

We then discuss the extent to which the quality of the
structure obtained from a contact map gets degraded
when the number of given contacts is reduced. This issue
has considerable importance beyond the scope of our
present study, since experimental data (e.g. from disulfide
bridge determination, crosslinking studies and NMR) are
often available for only a small number of distance
restraints. Clearly, the more restraints one has the smaller
is the number of possible conformations of a chain that are
consistent with the constraints contained in the contact
map. The issue we address is when this reduction of the
number of possible conformations suffices to define the
corresponding structure with satisfactory accuracy.

Results and discussion
Methodology
In this work, we adopt a widely used definition of contact:
two amino acids, ai and aj, are in contact if their distance
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d(ai, aj) is less than a certain threshold dt. The distance
d(ai, aj) is defined as: 

where ri and rj are the coordinates of the Cα atoms of
amino acids i and j.

The algorithm is divided into two parts. The first part,
growth, consists of adding one monomer at a time, i.e. a
step-by-step growth of the chain. The second part, adapta-
tion, is a refinement of the structure, obtained as a result
of the growth stage, by local moves. In both stages, to bias
the dynamics, we introduce cost functions defined on the
basis of the contact map. Such cost functions contain only
geometric constraints and do not resemble the true ener-
getics of the polypeptide chain.

Growth
Single monomer addition
Suppose we have grown i – 1 monomers and we want to
add point i to the chain. To place it, we generate at
random Nt trial positions (typically Nt = 10):

where j = 1,…,Nt. The direction of the vector r

(j) is
selected from a uniform distribution in the region of the
space allowed by the stiffness of the Cα chain. From a sta-
tistical analysis of several proteins in the PDB, we derived
the lower bound for the angle between two successive Cα,
which is expressed by the condition ri–1

.
ri

(j)/ ri–1 ri
(j) <

–0.3. The length of r(j) is distributed normally with average
ra and variance σ. Since in our representation monomers
identify the Cα positions, we took ra = 3.79 and σ = 0.04.
We assign a probability p(j) to each trial in the following
way. For each trial point ri

(j), we calculate the contacts that
it has (see equation 1) with the previously positioned
points r1,…,ri–1. Contacts that should be present, according
to the given contact map, are encouraged and contacts that
should not be there are discouraged according to a cost
function Eg that will be specified below. One out of the Nt
trials is chosen according to the probability:

where the normalization factor is given by: 

The notation for the cost function Eg and for the parame-
ter Tg that guide the growth are chosen in the spirit of the
Rosenbluth method [16] to suggest their reminiscence to
energy and temperature, respectively.

Chain growth
The step-by-step growth presented in the previous
section optimizes the position of successive amino acids
along the sequence. The main difficulty in the present
method is that the single step of the growing chain has no
information on the contacts that should be realized many
steps (or monomers) ahead. To solve this problem, we
carry out several attempts (typically 10) to reconstruct the
structure, choosing the best one. In practice, this is done
as follows.

For each attempt, when position r(j) is chosen for monomer
i according to equation 3, its probability is accumulated in
the weight: 

When we have reached the end of the chain, we store the
weight WN. The trial chain with the highest WN is chosen.

Cost function
The probabilities in equation 3 are calculated using the
following cost function: 

where and:

The enhancing factor d = i – k is introduced to guide the
growth towards contacts that are long ranged along the
chain; ϑ is the Heaviside step function and the constant ag
can take two values: ag(Sik = 1) ≥ 0 and ag(Sik = 1) ≤ 0. That
is, when a contact is identified in the chain, i.e. rik < dt, it is
either ‘rewarded’ (when the target map has a contact
between i and k) or penalized. In this work, we have
grown chains with ag(0) = 0. In this case, for a given
contact map S, the function fg rewards only those contacts
that are realized and should be present. No cost is paid if
contacts that are not in the map are realized by the chain
(false positive contacts). Typically, we chose the values
ag(1) = –1.0 and Tg = 1.

Adaptation
When we have grown the entire chain of N points, we
refine the structure according to the following scheme. We
choose a point i at random and try, using a crankshaft move
[17], to displace it to r′i, keeping fixed the distances from
both points i–1 and i+1. We use a local cost function Ea

(i): 
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where and:

Note that the enhancing factor d has been omitted, so that
fa does not favor contacts between monomers that are
distant along the chain. The displacement is accepted
with probability π, according to the standard Metropolis
prescription: 

where ∆Ea is the change in the cost function Ea induced
by the move and Ta is a temperature-like parameter, used
to control the acceptance ratio of the adaptation scheme. A
key ingredient of our method is annealing [18]. As in all
annealing procedures, the temperature-like parameter Ta
is decreased slowly during the simulation to help the
system find the groundstate in a rugged energy landscape.

In our method, however, instead of using simulation time
as a control parameter on the temperature, we chose the
number n of missing contacts. Two regimes were roughly
distinguished. In the first regime, many contacts are
missed and the map is very different from the target one.
In the second regime, few contacts are missed and the
map is close to the target. The parameters aa and Ta are
interpolated smoothly between values suitable for these
two limiting cases. In the first regime, we strongly favor
the recovery of contacts that should be realized, whereas
in the second regime, we strongly disfavor contacts that
are realized but should not be present. We set: 

The function σ(n) interpolates between the initial value ai

and the final value af: 

By choosing ai, af, Ta
i, Ta

f and αg we define the two
regimes, far from and close to the target map. 

Chirality
A contact map contains no information about chirality.
When an overall structure is reconstructed, the mirror
image conformation is equally legitimate, having the same
contact map. Since existing proteins do have a definite
chirality, we are allowed to supply this information.

The Cα–Cα contact constraints allow a local refinement
of the reconstructed structure, with no loss in our geo-
metrical cost function. α-Helices can be detected as a
thick band along the main diagonal of a contact map. A
preliminary scan of the map identifies the sections that

should be reconstructed as α-helices. Next, we push the
Cαs in the α-helices to positions that give the correct chi-
rality, which is formally defined as the normalized triple
product:

where vi = ri – ri–1.

In a typical α-helix, ci = co = 0.778 [8]. To refine the chiral-
ity of the preliminary chain obtained from the map by
growth and adaptation as described above, we perform an
additional Monte Carlo procedure. This procedure uses as
‘energy’ a function that strongly favors the value quoted
above for c: 

Since our Monte Carlo moves do not conserve the Cα–Cα
bond length, we added a term Eb to the energy function: 

At each step, a monomer i is selected randomly and its
position displaced to: 

where δ is a small random vector. The total variation in
the cost function, Ea + Ec, is evaluated with: 

used in equation 14.

Growth and adaptation yield a particular recovered struc-
ture, C. We first create C

–

, the mirror image of C, and use
both structures as initial states for the final refinement
procedure. Usually either C or C

–

evolves to a structure
with the correct value of the average chirality rather
quickly by our Monte Carlo process, while the mirror
image does not, due to the lower compatibility of the
latter structure with the correct chirality.

All-β structures deserve a special treatment, since we
cannot use chirality to filter out mirror images. Proteins 1acx
and 1tlk in Table 1 are all-β. We used the following empiri-
cal procedure. We generated several hundreds of conforma-
tions and computed the relative distances D (as from
equation 20). We found that reconstructed structures
cluster in two sets. Data presented in Figure 1 actually refer
to the reconstructed structures in the set that has a closer
distance with the known experimental conformation.
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Alternative strategies
We devote the rest of this section to the discussion of
alternative strategies that we have tried. Some of these
may prove to be useful in future applications for more
complex problems, but we have found that they are not
necessary for the specific task dealt with in this work. We
present these experiments because they underscore some
nontrivial aspects of the problem.

Adaptation alone
It is interesting to note that for short chains (N < 200) we
can skip the growth stage; starting from a random struc-
ture, the adaptation procedure alone suffices to recover
the correct set of contacts. The computer time needed for
recovery, however, increases very fast with N. Since we
are interested in recovering the structure in as short a time
as possible, growth must be used, especially for long
chains. We found that starting the adaptation stage from a
grown (versus random) initial chain speeds up the proce-
dure by a factor of about 10 for proteins of length N . 100.
Moreover, for longer chains (200 < N < 1000), the cost
function landscape is rougher and reconstruction by adap-
tation alone becomes unfeasible. 

Piecewise growth
The importance of local contacts (i.e. contacts that involve
amino acids nearby along the chain) versus nonlocal ones
has been discussed recently in the literature [19,20]. In
these works, evidence is given in support of the idea that
nonlocal interactions are decisive in stabilizing the folded
structure. A long-standing alternative hypothesis [21] is
that the folded structure is stabilized mainly by local inter-
actions. We can test in the present work whether the
purely geometrical (versus energetic) part of the recon-
struction can or cannot be helped much by emphasizing
the role of local contacts. To this end, we used secondary
structure elements as guidelines for the step-by-step
growth. To implement this kind of growth instead of
growing the entire chain of N amino acids, a section of M
steps is built, with M ranging from 4 to 10 to match the

size of a turn in an α-helix or in a β-sheet. A set of sections
is generated and the one with the best weight, according
to equation 5, is chosen. Consistent with the findings in
[19,20], we found that this secondary structure driven
growth does not help much in the recovery.

A related idea is to optimize the relative positions of suc-
cessive secondary structure elements. To realize this, we
have tried the following method (similar to that above).
Sections of chain of M steps are grown, but now M is
chosen randomly from 20 to 50. In this way, we explore
the space forward on the length scale of secondary struc-
tures to hook important contacts, i.e. those that fix the
positions of secondary structures relative to each other.
This scheme biases the growth to build a bridge to the
next important contact, which usually is either inside a
secondary structure or between different secondary struc-
tures. This method also allows one to go back if too many
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Figure 1

Average distances (a) 〈D′〉 and (b) 〈D〉 versus chain length N for the
proteins listed in Table 1.
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Table 1 

List of PDB proteins used to test the reconstruction procedure.

Protein N Nc Protein N Nc

6pti 56 342 2sodO 151 1066
2ci2 65 350 1bmv1 185 1084
1tlk 103 610 1akeA 214 1348
5cytR 103 644 1trmA 223 1595
1ltsD 103 571 1abe 305 2179
9rnt 104 623 1pii 452 3070
1acx 108 652 3gly 470 3383
2trxA 108 628 3cox 500 3680
1f3g 150 1049 1gal 581 4369
1aak 150 922



mistakes are detected. As was the case for the previous
attempted method, our experience suggests that this
forward exploration is not necessary for solving the
present task.

For multidomain proteins, we tried growing one domain at
a time and then refining the structure by an adaptation
cycle. The overall results were, however, only slightly
affected. By allowing the growth to start alternatively from
either end, we have verified that no bias is introduced if
the growth is started always from the same end as dis-
cussed above.

An alternative idea that we tried is to bias the growth
towards reaching a particular ‘fixed point’ [22]. For
example, if it is known that two amino acids i and j = i + k
should be in contact, then it is possible to bias the forma-
tion of a loop of length k. This method is well suited for
very sparse contact maps, where it is easy to identify target
points for the growing chain. We have verified that in
dense maps the reconstruction speed is not increased by
this scheme, due to the cumbersome identification of the
target points.

Different cost functions
As mentioned above, we have used ag(0) = 0. In general,
this could lead to an overcompaction of the final structure.
To assign unfavorable weight to false positive contacts, we
should set ag(0) > 0. This would introduce frustration to
the growth process, however, since it is guided by positive
and negative energies. We discuss here the results of a
possible method that we have tested to bias the growth
away from conformations that contain ‘spurious’ contacts,
i.e. contacts not present in the map. We have assigned a
positive cost ag(0) > 0 to generating a spurious contact (i,j)
if the closest existing contact (as measured on the map) is
more than a distance of R units away, e.g.:

where (h,k) runs over all the existing contacts Sh,k = 1 in
the given map. For the proteins we have analyzed (see
Table 1), we have extensively scanned possible values for
R and ag(0). We found that that there is a strongly frus-
trated regime for small R and large ag(0) where reconstruc-
tion is hindered, and a weakly frustrated regime for large
R and small ag(0) where the efficiency of the reconstruc-
tion is only slightly improved with respect to using
ag(0) = 0. The intermediate regime (typically R = 5–10 and
ag(0) = 0.1–0.01 for the values ag(1) = –1.0 and Tg = 1 given
above) may prove to be useful for proteins longer than
those tested is the present work.

As for the functional form of the cost function, another
possible choice, following Bohr and co-workers [6,8], is to
smooth the step function that defines a contact with a

sigmoid. Again, we did not find this necessary to achieve
fast reconstruction.

In principle, it would be possible to add to the function fg
of [7] a hard core repulsion: 

to try to overcome a general problem that arises when
working with distance inequalities: an overcompaction of
the globule, as measured e.g. by the gyration radius. In
practice, a good recovery prevents the overlap between
Cαs automatically and the addition of such a term is not
necessary.

Experimental contact maps
In this section, we present results concerning the recon-
struction of experimental contact maps as taken from the
PDB. Since our purpose, as explained in the Introduction,
is to use the reconstruction in connection with dynamics,
we chose dt = 9 Å to obtain the most faithful representa-
tion of the energy of the protein [3]. Such a threshold is
determined by the requirement that the average number
of Cα–Cα contacts for each amino acid is roughly equal to
the respective numbers obtained with the all-atom defini-
tion of contacts.

Two dissimilarity measures between structures are widely
used. The most commonly used [23–25] is the root mean
square distance D: 

where one structure is translated and rotated to get a
minimal D. Another possible choice is the distance D′:

The relation between D and D′ is derived by Cohen and
Sternberg [26]. The dissimilarity measure between
contact maps is defined as the Hamming distance:

which counts the number of mismatches between maps S
and S′.

For several proteins, we present in Figure 1 the distances
D and D′ plotted versus the chain length N. The proteins
considered (with their respective lengths N and number of
contacts Nc) are reported in Table 1.

The values of D and D′ presented in Figure 1 were
obtained by averaging over 100 reconstruction runs for
chains up to N = 223 and over 10 runs for longer chains.
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Error bars represent the variances as obtained from the
corresponding sets of runs, as shown, for example, for pro-
teins 6pti (bovine pancreatic trypsin inhibitor) and 1trmA
(rat trypsin, chain A) in Figure 2.

In Figure 3, we show the contact map for the protein 6pti,
N = 56, as taken from PDB, that was used as a target to
construct a chain. The contact map of a typical recon-
structed chain is also shown. In this particular case, none
of the 342 original contacts was missed and only two false
positive contacts were added. These are close to clusters
of correct contacts, indicating slight local differences with
the crystallographic structure. The distances recorded in
this case were D′ = 1.06 and D = 1.56.

In Figure 4, we show similar results for the larger protein
1trmA, with N = 223 and 1595 contacts. For clarity, we
have separated the experimental contact map from the
reconstructed one. In the particular case shown, there are
nine missing contacts and 84 false positives, and the corre-
sponding distances are D′ = 1.34 and D = 1.59. On average,
in the 100 runs, six contacts were missed and 75 false posi-
tives were spuriously added. As in the case of 6pti, wrong
contacts are mostly neighboring correct ones. Averages
distances are 〈D′〉 = 1.3 ± 0.1 Å and 〈D〉 = 1.6 ± 0.2 Å (see
also Figure 2). The corresponding conformations for both
6pti and 1trmA are shown in Figure 5. (These superposi-
tions can be compared with those in Figure 2 of [8].)

Using the distances D and D′ to assess the quality of our
results is misleading, since we are searching only for a
chain that reproduces the contacts of a given map,
whereas D and D′ measure similarity between structures.
Information that is all-important to obtain low values for D
and D′, such as the positions of amino acids that belong to
loops or slight rotations of secondary structures, is not con-
tained at all in the map. For example, for the two-domain
protein 1pii (phosphoribosylanthranilate isomerase),
which has the largest distance in Figure 1, only two out of
3070 contacts were missed, on average, in the 10 recon-
struction runs. However, changes in the relative orienta-
tions of the two domains lead to large distances. In fact,
the target native maps were nearly perfectly reconstructed
for all proteins tested.

We turn now to estimating the range of expected values
for D and D′ . The lower limit of our resolution for the
chain, imposed by the geometrical constraints contained
in the contact map, is about 1 Å. To support this state-
ment, we present the results of the following test. We
subjected the native maps of 6pti, 1acx (actinoxanthin)
and 1trmA from the PDB to an adaptation cycle at low
Ta. No native contacts were lost and no spurious ones
were generated throughout the simulation, even though
the structure (i.e. the positions of the beads) did vary;
the most probable value for the distance D′ between the
generated structures was found to be around 1 Å. This
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Figure 2

Distances D′ and D for the 100 runs used to
test the reconstruction procedure. Data are
presented for proteins (a) 6pti and (b) 1trmA.
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result clearly indicates the extent to which the contact
map representation does not allow us to nail down one
specific structure to arbitrary precision. This ambiguity
is compatible with the usual experimental resolution of
PDB structures and hence the contact map representa-
tion is useful. Moreover, from low temperature flash
photolysis experiments [27], X-ray diffraction result
analyses [28] and molecular dynamics simulations [29],
the native fold of a protein is believed to consist of a set
of conformational substates rather than of a unique
structure [30]. The upper limit of the range of expected
distances in our reconstruction is that between two
completely unrelated structures, which can be as large
as 15 Å. 

The conclusion of our studies is that our method pro-
duces, using a native contact map as target, a structure
whose contact map is in nearly perfect agreement with the
target. Furthermore, the distance of this reconstructed
chain from the native structure is quite close to the resolu-
tion that can be obtained from the information contained
in contact maps.

Nonphysical contact maps
As stated in the Introduction, our main purpose is to
develop a strategy to construct a three-dimensional struc-
ture, starting from a given set of contacts, even if these
contacts are not physical, i.e. not compatible with any con-
formation allowed by a chain’s topology. In such a case, we
require our procedure to yield a chain whose conformation
is as ‘close’ as possible to the contact map we started with.
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Figure 3

Contact map for protein 6pti for a threshold dt = 9 Å. Dots are the
PDB data, open circles the output of the reconstruction procedure.
None of the target contacts is missed and two spurious ones are
added.
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Figure 4

Contact map of protein 1trmA. Experimental contact map (above
diagonal) and reconstructed one (below diagonal).
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Figure 5

Backbone conformations as generated from a
typical reconstruction run with threshold 9 Å
for proteins (a) 6pti and (b) 1trmA. The
experimental crystallographic structures are
also shown for comparison.
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The exact measure of such closeness depends on the
source of nonphysicality, as will be demonstrated in two
examples described below.

Our first examples of nonphysical contact maps were
obtained by randomizing a native contact map; this was
done by flipping M randomly chosen entries. Contacts
between consecutive amino acids (neighbors along the
chain) were conserved.

A typical contact map with noise is shown in Figure 6.
The protein is 1trmA, whose contact map has 1595 con-
tacts when the threshold is set to 9 Å. We show the native
map and the target map obtained by flipping at random
M = 400 entries of the native map, together with the map
produced by our method. For the particular case shown,
distances to the crystallographic structure are D′ = 2.1 Å
and D = 2.4 Å. The most important conclusion that can be
drawn from Figure 6 is that isolated nonphysical contacts
are identified as such and ignored and the underlying
physical contact map is recovered.

The dependence of this recovery on the noise level is
shown in Figure 7, where we present the average distance
of the final structure from the uncorrupted 1trmA contact
map for various values of M. Averages were taken over 10
different realizations of the noise, and over 10 reconstruc-
tion runs for each realization. The distance for totally
unrelated structures for 1trmA is around 15 Å. It is remark-
able that up to M < 1000, a fair resemblance to the experi-
mental structure is still found. Even with the addition of a

noise, which is around 60% of the signal, the reconstruc-
tion procedure works. We have found similar results for
the smaller protein 6pti, which has 342 contacts and can
be fairly well reconstructed with a noise of up to 200
flipped contacts.

We can to a certain extent compare these results with
those of Bohr et al. [6]. They found, using a threshold
dt = 16 Å, that their method is robust against noise up to
3%. In their case, the noise is normalized by the total
number of possible contacts. For example, their 3% noise
corresponds to flipping about 750 entries of the map. The
threshold of 16 Å used by Bohr et al. is too large to be
appropriate for our parametrization of the contact energy
in terms of a single number. On the other hand, with such
a high value of the threshold, the contact map contains
much more information, i.e. 7336 contacts out of the
24,753 entries of the contact map matrix. The information
in the contact map is no longer minimal, and it becomes
possible to add a noise that is of the order of N2. We used
their threshold to generate our maps, introduced noise as
before and repeated the averaging procedure described
above. We found that with up to M = 5000 flipped contacts
(which corresponds to about 20% of the total number of
possible contacts), our method achieved the same quality
of reconstruction (〈D〉 = 4.1 ± 0.4 Å and 〈D′〉 = 3.4 ± 0.2 Å)
as was obtained by Bohr et al. for a noise level of 3–5%.

The family of possible nonphysical contact maps, which is
most relevant to our program, is produced by using the
heuristic constrained dynamic rules in contact map space
that were introduced by Mirny and Domany [3]. Follow-
ing them, we started with a native map of 6pti; when using
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Figure 6

Contact map for protein 1trmA. Above diagonal: reference map
(crosses) obtained by randomizing the underlying physical map (dots).
Below diagonal: reconstructed contact map (open circles) obtained
using the noise-corrupted map as target.
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Figure 7

Average distances 〈D′〉 and 〈D〉 versus noise M for protein 1trmA.
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a threshold dt = 8.5 Å, the map derived from the PDB
structure has 289 contacts, represented by open circles
above the diagonal of Figure 8. We have recomputed the
energy parameters for the present definition of contacts
(which involves Cα atoms only) and for a threshold of
8.5 Å (energy parameters are available from the authors on
request). The energy of the native 6pti map obtained in
this way is 36.81. This contact map is subjected to
repeated denaturation/renaturation cycles, using the con-
strained dynamics introduced by Mirny and Domany [3].
We first heat the protein, inducing its unfolding, which is
signaled by melting of secondary structure elements in the
contact map. For moderate temperature shocks, the
protein is generally able to refold upon annealing [3]. 

In this work, we add a second step to this experiment, by
subjecting the contact map obtained by constrained
dynamics to our reconstruction procedure. To discuss in
some detail the result of this combined scheme, we intro-
duce three classes of contacts: we denote by A the con-
tacts present in SA, the experimental contact map of
protein 6pti (native contacts); by B the contacts present in
SB, the contact map obtained by constrained dynamics in
contact map space, starting from SA; and by C the contacts
in SC, the reconstructed contact map obtained using SB as
a target. We present in Table 2 the total number of con-
tacts in each class and the number of contact in common
between two classes. Map SB has 255 contacts, 215 of

which are in common with map SA. This difference is due
to 74 missing contacts and 40 spurious ones (see also
Figure 8, above the diagonal). The energy of SB is 13.35.
The reconstructed map SC has 310 contacts, 251 of which
are in common with the target map SB. The difference
arises from four missing contacts and 61 false positives.
This reconstruction score is significantly larger than those
typically obtained by applying directly our reconstruction
procedure to native maps of proteins of similar size (see
e.g. our discussion about Figure 3). This suggests,
although without proving it, that the first step of the
experiment, when we apply the rules of constrained
dynamics introduced by Mirny and Domany [3] is not
guaranteed to yield a physically realizable map. From a
closer inspection, however, we can derive an overall con-
sistency argument that implies that the Mirny and
Domany rules do not drive the system very far away from
the physical region in contact map space. The map SC and
the native map SA have 249 common contacts. SC has 40
missing and 61 false positives with respect to SA. Never-
theless, the distances in the three-dimensional structures
are D′ = 2.14 and D = 2.97, respectively, indicating a rather
successful refolding.

From these results, we argue that the Mirny and Domany
rules alone are possibly not restrictive enough to keep the
trajectory of the system in the physical region of the
contact map space during a denaturation/renaturation
experiment. This problem can be corrected by the recon-
struction procedure discussed in this work. Our procedure
projects the contact map obtained by the Mirny and
Domany rules onto a contact map that is admissible by
construction. Rather consistently, the projected map is
quite close to the target one.

Reducing the number of contacts
In this section, we address a very important issue: the
effect of reducing the number of contacts on the accuracy
of the reconstructed structure. Even though resolving this
problem is not essential for our goals, its resolution is an
interesting spinoff obtained from our algorithm. The issue
is relevant to a number of problem areas where contacts
are of importance, such as protein structure determination
from NMR data [31] and studies of DNA and crosslinked
polymers. The latter are known to undergo a vulcanization
transition from a liquid phase to a frozen amorphous phase
if the number of contacts exceeds a critical value [32,33].
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Table 2 

Number of contacts in classes A, B and C and the number of
common contacts between classes. 

A B C AB AC BC 

289 255 310 215 249 251

Figure 8

Reconstruction of a contact map of protein 6pti obtained by the
constrained dynamics introduced by Mirny and Domany [3]. Above
diagonal: reference map (dots) obtained by a denaturation/renaturation
cycle starting from the experimental map (open circles). Below
diagonal: reconstructed contact map (crosses) obtained by using as a
target the contact map (dots) that was obtained by constrained
dynamics.

0.0 20.0 40.0
0.0

20.0

40.0



The stochastic reconstruction method described in this
work is rather general and potentially applicable to these
systems as well.

In real proteins, the number of contacts scales with the
chain length N, as shown in Figure 9 for a representative
set of 246 proteins taken from the PDB. Fitting the data
with a single power law: 

yields best fit for ν = 1.07, but the data are also compatible
with linear scaling (e.g. ν = 1) as well as with a combina-
tion of linear scaling and surface corrections:

All three fits are shown in the figure and are nearly indis-
tinguishable on the scale used. Figure 9 was obtained
using the definition of contacts as given by equation 1
with a threshold of dt = 9 Å. In the range 5 Å < dt < 9 Å,
only the prefactor a changes, while the exponent ν
remains the same. This result holds also for the Mirny and
Domany definition of a contact. It has been proposed that
in order to have a compact structure, the minimum
number of contacts of a random heteropolymer should
scale linearly with N [34–36] or with N/ln N [37]. These
findings suggest that in proteins the number of contacts
required to determine the native fold also cannot scale
with a power that is much less than linear with N. The rel-
evant issue, to which considerable effort has recently been
devoted [9,11], concerns how small the prefactor a can be,
in order to achieve reasonable reconstruction of protein
structure from incomplete experimental distance informa-
tions. We address this point by analyzing the feasibility of
the reconstruction as the threshold dt is decreased. The
smaller dt, the smaller is the number of contacts present in
the contact map.

We now present detailed studies of protein 1acx, with
N = 108. For dt = 9 Å, the number of contacts was 652; for
dt = 6 Å, this number becomes 253 and 154 for dt = 5 Å.
Note that the optimal parameters used for annealing
depend on dt; for dt = 5 Å, for example, the values
af(1) = –5, ai(1) = –20, af(0) = 0.1 and ai(0) = 0.5 were used. 

In all cases, our method produced chains whose contact
maps were in nearly perfect agreement with the respec-
tive target maps (deviating by one or two spurious con-
tacts). The distances of the corresponding structures from
the native one are, however, very different as dt decreases.
As shown in Figure 10, the values of the average distances
D′ and D (obtained from 100 runs for each dt) increase
from 1–2 Å for dt = 9 Å to 5–8 Å for dt = 5 Å. 

This striking increase of D with decreasing dt shows that
even when the target contact map is essentially perfectly
recovered, the corresponding structure can be very different

from the true one. This suggests that for low values of dt
more information than that contained in the contact map
should be provided to get acceptable resemblance to the
experimental structure. 

Summary and conclusions
We have presented a stochastic method to derive a three-
dimensional structure from a contact map representation.
We have shown that for physically realizable target contact

M aN bN= + 2 3                            (24)/

M aN= ν                                        (23)
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Figure 9

Scaling of M, the number of contacts, with the length N of the proteins.
Data refer to 246 proteins taken from the PDB, and to a threshold
dt = 9 Å.
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Average distances 〈D′〉 and 〈D〉 as a function of the threshold dt for
protein 1acx.
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maps our method is very fast and reliable to find a chain
conformation whose contact map is nearly identical to the
target. Moreover, the method is able to find a good candi-
date structure even when the target map has been cor-
rupted with nonphysical contacts.

The information contained in a known native contact map
suffices to reconstruct a conformation that is relatively
close to that of the original structure, as was already
observed by Havel et al. [2]. There is, however, an intrinsic
limit in the resolution of a contact map. We used a thresh-
old of 9 Å between Cα atoms to define contact; for this
threshold, the distance between two typical structures that
are both compatible with the contact map is about 1 Å.
The threshold of 9 Å is relevant for our purpose of working
with contact energies in a scheme to derive structure from
sequence. The present work is instrumental in achieving
this long-term goal and it is within this context that it
should be viewed. That is, whereas existing methods aim
at obtaining a structure of ‘high quality’ (as measured, for
example, by the distance D from the true structure), we are
interested mainly in starting from a possibly nonphysical
contact map and producing from it one that is guaranteed
to be physical. Reconstructing structure from a (possibly
noisy) contact map is also an important problem and we
believe that our work has contributed to its solution. 

The contact map representation is intimately connected
with the parametrization of every contact energy by a
single number. We are currently studying the dynamics in
contact map space, controlled by such a simple energy
function. We believe that such a study will reveal whether
the contact map representation, together with the assump-
tions implicit in working with a pairwise contact-based
approximation for the energy, suffice to single out the
native state of a protein.
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