38 research outputs found

    Generation of dense electron bunches by laser plasma accelerators for QED experiments in high fields

    Get PDF
    Die Entwicklung von Laser-Plasma getriebenen Beschleunigern (LWFA) ist eine vergleichsweise neue Entwicklung. Durch die enormen Felder, die das Plasma zur Verfügung stellen kann, ist es möglich, ultrakurze und dichte Elektronenpulse über sehr kurze Strecken zu beschleunigen. In dieser Arbeit wird gezeigt, dass die Gasdynamik auf einer \sim 10\einh{\mu m}-Skala, die bisher nicht gemessen werden konnte, großen Einfluss auf den LWFA-Beschleunigungsprozess hat. Dichtemodulationen auf einer Skala von 10\einh{\mu m} wurden mithilfe eines ultrakurzen Laserpulses in Plasmen vermessen, die durch die Fokussierung des Hochintensitätslasers in einen Gasjet erzeugt wurden. Es wird gezeigt, dass diese Dichtemodulationen die Selbstinjektion in diesem Plasma auslösen. Die Resultate werden sowohl durch ein analytisches Modell sowie Particle-in-Cell (PIC) Simulationen bestätigt. Diese Erkenntnisse ebnen den Weg zu einem Plasmabeschleuniger bei dem Injektions- und Beschleunigsprozess unabhängig voneinander kontrolliert werden können. Darüber hinaus wurde in dieser Arbeit ein neues Kriterium für die Homogenität der Plasmadichte eingeführt, das auch in einem allgemeineren Kontext für Plasmabeschleuniger gilt. Im zweiten Teil der Dissertation wird untersucht, inwiefern kurze Elektronenpulse in Plasmen fokussiert werden können. In dieser Arbeit wird erstmalig das Konzept der passiven Plasmalinse mit ultrakurzen LWFA-Elektronenpulsen untersucht. Sowohl Experimente als auch Simulationen demonstrieren den Effekt der passiven Plasmalinse. Es wurde zudem ein analytisches Modell entwickelt, welches die experimentellen Ergebnisse beschreibt. Es ist hervorzuheben, dass die gemessene Fokussierstärke die eines konventionellen Quadrupolmagneten deutlich übersteigt. Das Modell sagt des Weiteren eine Steigerung der Fokussierstärke für Elektronenpulse mit größerer Ladung voraus

    A large aperture reflective wave-plate for high-intensity short-pulse laser experiments

    Full text link
    We report on a reflective wave-plate system utilizing phase-shifting mirrors (PSM) for a continuous variation of elliptical polarization without changing the beam position and direction. The scalability of multilayer optics to large apertures and the suitability for high-intensity broad-bandwidth laser beams make reflective wave-plates an ideal tool for experiments on relativistic laser-plasma interaction. Our measurements confirm the preservation of the pulse duration and spectrum when a 30-fs Ti:Sapphire laser beam passes the system

    Enhanced ultrafast X-ray diffraction by transient resonances

    Full text link
    Diffraction-before-destruction imaging with single ultrashort X-ray pulses has the potential to visualise non-equilibrium processes, such as chemical reactions, at the nanoscale with sub-femtosecond resolution in the native environment without the need of crystallization. Here, a nanospecimen partially diffracts a single X-ray flash before sample damage occurs. The structural information of the sample can be reconstructed from the coherent X-ray interference image. State-of-art spatial resolution of such snapshots from individual heavy element nanoparticles is limited to a few nanometers. Further improvement of spatial resolution requires higher image brightness which is ultimately limited by bleaching effects of the sample. We compared snapshots from individual 100 nm Xe nanoparticles as a function of the X-ray pulse duration and incoming X-ray intensity in the vicinity of the Xe M-shell resonance. Surprisingly, images recorded with few femtosecond and sub-femtosecond pulses are up to 10 times brighter than the static linear model predicts. Our Monte-Carlo simulation and statistical analysis of the entire data set confirms these findings and attributes the effect to transient resonances. Our simulation suggests that ultrafast form factor changes during the exposure can increase the brightness of X-ray images by several orders of magnitude. Our study guides the way towards imaging with unprecedented combination of spatial and temporal resolution at the nanoscale

    Ultra-fast yttrium hydride chemistry at high pressures via non-equilibrium states induced by x-ray free electron laser

    Full text link
    Controlling the formation and stoichiometric content of desired phases of materials has become a central interest for the study of a variety of fields, notably high temperature superconductivity under extreme pressures. The further possibility of accessing metastable states by initiating reactions by x-ray triggered mechanisms over ultra-short timescales is enabled with the development of x-ray free electron lasers (XFEL). Utilizing the exceptionally high brilliance x-ray pulses from the EuXFEL, we report the synthesis of a previously unobserved yttrium hydride under high pressure, along with non-stoichiometric changes in hydrogen content as probed at a repetition rate of 4.5\,MHz using time-resolved x-ray diffraction. Exploiting non-equilibrium pathways we synthesize and characterize a hydride with yttrium cations in an \textit{A}15 structure type at 125\,GPa, predicted using crystal structure searches, with a hydrogen content between 4.0--5.75 hydrogens per cation, that is enthalpically metastable on the convex hull. We demonstrate a tailored approach to changing hydrogen content using changes in x-ray fluence that is not accessible using conventional synthesis methods, and reveals a new paradigm in metastable chemical physics

    Simultaneous Bright- and Dark-Field X-ray Microscopy at X-ray Free Electron Lasers

    Full text link
    The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior. Synchrotron X-ray diffraction based imaging has long mapped the deeply embedded structural elements, and with enhanced resolution, Dark Field X-ray Microscopy (DFXM) can now map those features with the requisite nm-resolution. However, these techniques still suffer from the required integration times due to limitations from the source and optics. This work extends DFXM to X-ray free electron lasers, showing how the 101210^{12} photons per pulse available at these sources offer structural characterization down to 100 fs resolution (orders of magnitude faster than current synchrotron images). We introduce the XFEL DFXM setup with simultaneous bright field microscopy to probe density changes within the same volume. This work presents a comprehensive guide to the multi-modal ultrafast high-resolution X-ray microscope that we constructed and tested at two XFELs, and shows initial data demonstrating two timing strategies to study associated reversible or irreversible lattice dynamics

    Progress in hybrid plasma wakefield acceleration

    Get PDF
    Plasma wakefield accelerators can be driven either by intense laser pulses (LWFA) or by intense particle beams (PWFA). A third approach that combines the complementary advantages of both types of plasma wakefield accelerator has been established with increasing success over the last decade and is called hybrid LWFA→PWFA. Essentially, a compact LWFA is exploited to produce an energetic, high-current electron beam as a driver for a subsequent PWFA stage, which, in turn, is exploited for phase-constant, inherently laser-synchronized, quasi-static acceleration over extended acceleration lengths. The sum is greater than its parts: the approach not only provides a compact, cost-effective alternative to linac-driven PWFA for exploitation of PWFA and its advantages for acceleration and high-brightness beam generation, but extends the parameter range accessible for PWFA and, through the added benefit of co-location of inherently synchronized laser pulses, enables high-precision pump/probing, injection, seeding and unique experimental constellations, e.g., for beam coordination and collision experiments. We report on the accelerating progress of the approach achieved in a series of collaborative experiments and discuss future prospects and potential impact

    postpic: v0.2.2

    No full text
    The open source particle-in-cell post processor

    postpic: Postpic v0.1.1

    No full text
    <p>The open source particle-in-cell post processor.</p

    postpic v0.0.1

    No full text
    <p>First release of postpic</p

    Efficient retrieval of phase information from real-valued electromagnetic field data

    No full text
    While analytic calculations may give access to complex-valued electromagnetic field data which allow trivial access to envelope and phase information, the majority of numeric codes uses a real-valued represantation. This typically increases the performance and reduces the memory footprint, albeit at a price: In the real-valued case it is much more difficult to extract envelope and phase information, even more so if counter propagating waves are spatially superposed. A novel method for the analysis of real-valued electromagnetic field data is presented in this paper. We show that, by combining the real-valued electric and magnetic field at a single point in time, we can directly reconstruct the full information of the electromagnetic fields in the form of complex-valued spectral coefficients (k\vec{k}-space) at a low computational cost of only three Fourier transforms. The method allows for counter propagating plane waves to be accurately distinguished as well as their complex spectral coefficients, i.\,e. spectral amplitudes and spectral phase to be calculated. From these amplitudes, the complex-valued electromagnetic fields and also the complex-valued vector potential can be calculated from which information about spatiotemporal phase and amplitude is readily available. Additionally, the complex fields allow for efficient vacuum propagation allowing to calculate far field data or boundary input data from near field data. An implementation of the new method is available as part of PostPic, a data analysis toolkit written in the Python programming language.Comment: 10 pages, 4 figure
    corecore