578 research outputs found

    Exploiting plasmonic enhancement with light-emitting diode excitation in surface-enhanced Raman scattering

    Get PDF
    Surface-enhanced Raman scattering (SERS) is a well-established technique that enables the detection of very low molecular concentrations down to single molecules. Typical applications of SERS are the consistent identification of various samples used in chemistry, biology, and physics among others. In contrast to common SERS setups, where lasers are used as excitation source, we exploit SERS to perform Raman spectroscopy with a light-emitting diode (LED). We demonstrate the applicability of our approach on four different Raman reporters. We unambiguously distinguish two similar designer molecules 4-nitrothiophenol (p-NTP) and 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) that are often used in SERS experiments. Additionally, we probe Rhodamine 6G that is used in many different applications and carbon nanotubes as a one-dimensional solid state nanosystem. The LED excited surface-enhanced Raman spectra reproduce the characteristic Raman modes of the different samples. We compare the LED spectra to Raman spectra excited with a laser at the same wavelength. We envision the combination of LED sources with SERS substrates in the next generation of handheld devices and low-cost Raman setups

    Quenching of the E2 phonon line in the Raman spectra of wurtzite GaAs nanowires caused by the dielectric polarization contrast

    Get PDF
    We investigate the Raman intensity of EH2 phonons in wurtzite GaAs nanowire ensembles as well as single nanowires as a function of excitation wavelength. For nanowires with radii in the range of 25 nm, an almost complete quenching of the EH2 phonon line is observed for excitation wavelengths larger than 600 nm. The observed behavior is quantitatively explained by the dielectric polarization contrast for the coupling of light into the GaAs nanowires. Our results define the limits of Raman spectroscopy for the detection of the wurtzite phase in semiconductor nanowires

    Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods

    Get PDF
    We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips’ broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD’s confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates

    Correction: Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods

    Get PDF
    Correction for 'Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods' by M. Conroy et al., Nanoscale, 2016, 8 , 11019-11026

    A systematic comparison of polar and semipolar Si-doped AlGaN alloys with high AlN content

    Get PDF
    Abstract With a view to supporting the development of ultra-violet light-emitting diodes and related devices, the compositional, emission and morphology properties of Si-doped n-type Al x Ga1-x N alloys are extensively compared. This study has been designed to determine how the different Al x Ga1-x N crystal orientations (polar (0001) and semipolar (11–22)) affect group-III composition and Si incorporation. Wavelength dispersive x-ray (WDX) spectroscopy was used to determine the AlN mole fraction (x ≈ 0.57–0.85) and dopant concentration (3 × 1018–1 × 1019 cm−3) in various series of Al x Ga1-x N layers grown on (0001) and (11–22) AlN/sapphire templates by metalorganic chemical vapor deposition. The polar samples exhibit hexagonal surface features with Ga-rich boundaries confirmed by WDX mapping. Surface morphology was examined by atomic force microscopy for samples grown with different disilane flow rates and the semipolar samples were shown to have smoother surfaces than their polar counterparts, with an approximate 15% reduction in roughness. Optical characterization using cathodoluminescence (CL) spectroscopy allowed analysis of near-band edge emission in the range 4.0–5.4 eV as well as various deep impurity transition peaks in the range 2.7–4.8 eV. The combination of spatially-resolved characterization techniques, including CL and WDX, has provided detailed information on how the crystal growth direction affects the alloy and dopant concentrations.</jats:p

    Sirt2 promotes white matter oligodendrogenesis during development and in models of neonatal hypoxia

    Get PDF
    Delayed oligodendrocyte (OL) maturation caused by hypoxia (Hx)-induced neonatal brain injury results in hypomyelination and leads to neurological disabilities. Previously, we characterized Sirt1 as a crucial regulator of OL progenitor cell (OPC) proliferation in response to Hx. We now identify Sirt2 as a critical promoter of OL differentiation during both normal white matter development and in a mouse model of Hx. Importantly, we find that Hx reduces Sirt2 expression in mature OLs and that Sirt2 overexpression in OPCs restores mature OL populations. Reduced numbers of Sirt2+ OLs were also observed in the white matter of preterm human infants. We show that Sirt2 interacts with p27Kip1/FoxO1, p21Cip1/Cdk4, and Cdk5 pathways, and that these interactions are altered by Hx. Furthermore, Hx induces nuclear translocation of Sirt2 in OPCs where it binds several genomic targets. Overall, these results indicate that a balance of Sirt1 and Sirt2 activity is required for developmental oligodendrogenesis, and that these proteins represent potential targets for promoting repair following white matter injury

    Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

    No full text
    Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity

    Assessing the perspective of well-being of older patients with multiple morbidities by using the LAVA tool-a person-centered approach

    Get PDF
    BACKGROUND: Older patients with multiple morbidities are a particularly vulnerable population that is likely to face complex medical decisions at some time in their lives. A patient-centered medical care fosters the inclusion of the patients’ perspectives, priorities, and complaints into clinical decision making. METHODS: This article presents a short and non-normative assessment tool to capture the priorities and problems of older patients. The so-called LAVA (“Life and Vitality Assessment”) tool was developed for practical use in seniors in the general population and for residents in nursing homes in order to gain more knowledge about the patients themselves as well as to facilitate access to the patients. The LAVA tool conceptualizes well-being from the perspectives of older individuals themselves rather than from the perspectives of outside individuals. RESULTS: The LAVA tool is graphically presented and the assessment is explained in detail. Exemplarily, the outcomes of the assessments with the LAVA of three multimorbid older patients are presented and discussed. In each case, the assessment pointed out resources as well as at least one problem area, rated as very important by the patients themselves. CONCLUSIONS: The LAVA tool is a short, non-normative, and useful approach that encapsulates the perspectives of well-being of multimorbid patients and gives insights into their resources and problem areas. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12877-021-02342-3
    • 

    corecore