77 research outputs found

    Dynamic arrest of colloids in porous environments: disentangling crowding and confinement

    Full text link
    Using numerical simulations we study the slow dynamics of a colloidal hard-sphere fluid adsorbed in a matrix of disordered hard-sphere obstacles. We calculate separately the contributions to the single-particle dynamic correlation functions due to free and trapped particles. The separation is based on a Delaunay tessellation to partition the space accessible to the centres of fluid particles into percolating and disconnected voids. We find that the trapping of particles into disconnected voids of the matrix is responsible for the appearance of a nonzero long-time plateau in the single-particle intermediate scattering functions of the full fluid. The subdiffusive exponent zz, obtained from the logarithmic derivative of the mean-squared displacement, is observed to be essentially unaffected by the motion of trapped particles: close to the percolation transition, we determined z≃0.5z \simeq 0.5 for both the full fluid and the particles moving in the percolating void. Notably, the same value of zz is found in single-file diffusion and is also predicted by mode-coupling theory along the diffusion-localisation line. We also reveal subtle effects of dynamic heterogeneity in both the free and the trapped component of the fluid particles, and discuss microscopic mechanisms that contribute to this phenomenon.Comment: 18 pages, 12 figures, minor change

    Impact of random obstacles on the dynamics of a dense colloidal fluid

    Full text link
    Using molecular dynamics simulations we study the slow dynamics of a colloidal fluid annealed within a matrix of obstacles quenched from an equilibrated colloidal fluid. We choose all particles to be of the same size and to interact as hard spheres, thus retaining all features of the porous confinement while limiting the control parameters to the packing fraction of the matrix, {\Phi}m, and that of the fluid, {\Phi}f. We conduct detailed investigations on several dynamic properties, including the tagged-particle and collective intermediate scattering functions, the mean-squared displacement, and the van Hove function. We show the confining obstacles to profoundly impact the relaxation pattern of various quantifiers pertinent to the fluid. Varying the type of quantifier (tagged-particle or collective) as well as {\Phi}m and {\Phi}f, we unveil both discontinuous and continuous arrest scenarios. Furthermore, we discover subdiffusive behavior and demonstrate its close connection to the matrix structure. Our findings partly confirm the various predictions of a recent extension of mode-coupling theory to the quenched-annealed protocol.Comment: 16 pages, 20 figures, minor revision

    Single-particle and collective slow dynamics of colloids in porous confinement

    Full text link
    Using molecular dynamics simulations we study the slow dynamics of a hard sphere fluid confined in a disordered porous matrix. The presence of both discontinuous and continuous glass transitions as well as the complex interplay between single-particle and collective dynamics are well captured by a recent extension of mode-coupling theory for fluids in porous media. The degree of universality of the mode-coupling theory predictions for related models of colloids is studied by introducing size-disparity between fluid and matrix particles, as well as softness in the interactions.Comment: 4 pages, 5 figures, minor revision

    Implementation of Open Innovation in Chemical B2B Companies

    Full text link
    In a survey-based study including 42 companies of the chemical B2B industry, the sage and dissemination of Open Innovation (OI) initiatives are investigated. The article focuses on strategies and the motivation to implement OI tools. By summarizing the empirical evidence of OI, the success of projects and perceived satisfaction with the chosen approach is assessed using qualitative comparative analysis (QCA). The results show a very diverse picture of OI approaches in the chemical B2B industry, as only 52% of the participants’ state to use OI at all. However, the potential to use OI for exploration and exploitation purposes is revealed, which is especially of interest for a productive and successful implementation. In addition, the need of top management support to successful implement an OI approach is shown

    Cryo-balloon reconstruction from two views

    Full text link
    Atrial fibrillation is a major cause of stroke. Its treatment is performed under fluoroscopic image guidance. Augmented fluoroscopy has become a useful tool during the ablation pro-cedure for navigation under X-ray. Unfortunately, current navigation systems do not provide tools to localize and visu-alize a cryo-balloon catheters in 3-D. This is why we present a new approach to reconstruct the cryo-ballon catheter, mod-eled as a sphere, from two views. The reconstruction result can then be overlayed onto live fluoroscopic images during the procedure. In simulation studies, we compared our tech-nique to a reference method. While both methods worked equally well on noise-free data, we found our method more reliable if the input data was affected by noise. For example, in the presence of noise with a standard deviation of 4 mm, our maximum 3-D reconstruction error was less than 1 mm

    The Localization Transition of the Two-Dimensional Lorentz Model

    Full text link
    We investigate the dynamics of a single tracer particle performing Brownian motion in a two-dimensional course of randomly distributed hard obstacles. At a certain critical obstacle density, the motion of the tracer becomes anomalous over many decades in time, which is rationalized in terms of an underlying percolation transition of the void space. In the vicinity of this critical density the dynamics follows the anomalous one up to a crossover time scale where the motion becomes either diffusive or localized. We analyze the scaling behavior of the time-dependent diffusion coefficient D(t) including corrections to scaling. Away from the critical density, D(t) exhibits universal hydrodynamic long-time tails both in the diffusive as well as in the localized phase.Comment: 13 pages, 7 figures
    • 

    corecore