2,987 research outputs found

    The galaxy's 157 micron (C 2) emission: Observations by means of a spectroscopic lunar-occultation technique

    Get PDF
    Galactic (C II) 157 micron, fine-structure emission was estimated. At a Galactic longitude of 8 deg, the peak power observed in a 7' x 7' field is approx. 5 x 10 to the -9 Watt. The method used to detect this radiation involved chopping against the cold side of the Moon

    Highly ejected J = 16 to 15 rotational transitions of CO at 162.8 mirons in the Orion cloud

    Get PDF
    The first observations of the J = 16 to J = 15, 162.8 microns transition of CO from an astronomical source are reported. Measurements were carried out on the Kleinmann-Low Nebula. The intensity observed is in good agreement with predictions from previous spectroscopic work carried out in the far infrared. The observation strengthens the previous claim that approximately 1.5 solar mass of molecular hydrogen is heated to a temperature above 750 K within the shocked region in the Nebula. Upper limits to he OH intensity in the F2 (2Pi 1/2) transitions J = 3/2 to J = 1/2 which fall into two groups centered respectively at 163.12 and 163.40 are presented

    Observations of the 145.5 micron (OI) emission line in the Orion nebula

    Get PDF
    A first set of observations of the (OI) 3P to 3P1 (145.5 micron) transition was obtained. The line was observed both in a beam centered on the Trapezium, and in a 7 times wider beam encompassing most of the Orion Nebula. A wide beam map of the region was constructed which shows that most of the emission is confined to the central regions of the nebula. These observations may be compared with reported measurement of the 3P1 to 3P2 (63.2 micron) transition in Orion and are consistent with optically thin emission in the 145.5 micron line and self-adsorbed 63.2 micron emission lines. Mechanisms are discussed for the excitation of neutral oxygen. It is included that much of the observed emission originates in the thin, radio-recombination-line-emitting CII/HI envelope bordering on the HII region

    An Improved Cryosat-2 Sea Ice Freeboard Retrieval Algorithm Through the Use of Waveform Fitting

    Get PDF
    We develop an empirical model capable of simulating the mean echo power cross product of CryoSat-2 SAR and SAR In mode waveforms over sea ice covered regions. The model simulations are used to show the importance of variations in the radar backscatter coefficient with incidence angle and surface roughness for the retrieval of surfaceelevation of both sea ice floes and leads. The numerical model is used to fit CryoSat-2 waveforms to enable retrieval of surface elevation through the use of look-up tables and a bounded trust region Newton least squares fitting approach. The use of a model to fit returns from sea ice regions offers advantages over currently used threshold retrackingmethods which are here shown to be sensitive to the combined effect of bandwidth limited range resolution and surface roughness variations. Laxon et al. (2013) have compared ice thickness results from CryoSat-2 and IceBridge, and found good agreement, however consistent assumptions about the snow depth and density of sea ice werenot used in the comparisons. To address this issue, we directly compare ice freeboard and thickness retrievals from the waveform fitting and threshold tracker methods of CryoSat-2 to Operation IceBridge data using a consistent set of parameterizations. For three IceBridge campaign periods from March 20112013, mean differences (CryoSat-2 IceBridge) of 0.144m and 1.351m are respectively found between the freeboard and thickness retrievals using a 50 sea ice floe threshold retracker, while mean differences of 0.019m and 0.182m are found when using the waveform fitting method. This suggests the waveform fitting technique is capable of better reconciling the seaice thickness data record from laser and radar altimetry data sets through the usage of consistent physical assumptions

    Submillimeter observations of OH and CH in M42

    Get PDF
    The (sup 2) pi sub 1/2 (J = 3/2 to 1/2) transitions of OH at 163.12 and 163.40 micro m have been detected and upper limits have been obtained for the (sup 2) pi sub 3/2 (J = 3/2 to 1/2) transitions of CH at 149.09 and 149.39 micro m, in observations of the Kleinmann-Low Nebula of Orion. All four flux levels lie between 1 and 1.2 x 10 to the 17th power/sq.cm. The OH lines are bright when compared to the lower, (sup 2) pi sub 3/2 (J = 5/2 to 3/2) fluxes reported and imply that the 119 micro m emission observed is partially self-absorbed. The combined results provide strong constraints. Taken together with existing data on molecular hydrogen and CO and recent data on other OH transition, they suggest OH emission from post-shock regions at temperatures T approx 1000 k, densities approx. 7 x 10 to the 6th powr/cu cm N sub OH approx 80/cu cm optically thick for the (sup 2) pi sub 3/2 (J = 5/2 to 3/2), 119 micro m but only partially self-absorbing in the (J = 7/2 to 3/2), 84 micro m transitions over a Doppler velocity bandwidth of 30 km/sec. The OH column density is N sub OH approx 4 x 10 to the 16th powr/sq cm. in the emitting regions which occupy a fraction of approx 0.1 of a 1' x 1' field of view centered on the Becklin-Neugebauer source. The CO (J = 31 to 30), 84 micro m transition appears to lie sufficiently close to one of the 84 micro m OH line components to be partially absorbed as well, through a Bowen-type mechanism

    Discovery of unusual pulsations in the cool, evolved Am stars HD 98851 and HD 102480

    Full text link
    The chemically peculiar (CP) stars HD 98851 and HD 102480 have been discovered to be unusual pulsators during the ``Naini Tal Cape Survey'' programme to search for pulsational variability in CP stars. Time series photometric and spectroscopic observations of these newly discovered stars are reported here. Fourier analyses of the time series photometry reveal that HD 98851 is pulsating mainly with frequencies 0.208 mHz and 0.103 mHz, and HD 102480 is pulsating with frequencies 0.107 mHz, 0.156 mHz and 0.198 mHz. The frequency identifications are all subject to 1 d1^{-1} cycle count ambiguities. We have matched the observed low resolution spectra of HD 98851 and HD 102480 in the range 3500-7400 \AA with theoretical synthetic spectra using Kurucz models with solar metallicity and a micro-turbulent velocity 2 km s1^{-1}. These yield Teff=7000±250T_{eff}=7000\pm250 K, log g=3.5±0.5g=3.5 \pm 0.5 for HD 98851 and Teff=6750±250T_{eff} = 6750 \pm 250 K, log g=3.0±0.5g = 3.0 \pm 0.5 for HD 102480. We determined the equivalent H-line spectral class of these stars to be F1 IV and F3 III/IV, respectively. A comparison of the location of HD 98851 and HD 102480 in the HR diagram with theoretical stellar evolutionary tracks indicates that both stars are about 1-Gyr-old, 2-MM_{\odot} stars that lie towards the red edge of the δ\delta Sct instability strip. We conclude that HD 98851 and HD 102480 are cool, evolved Am pulsators. The light curves of these pulsating stars have alternating high and low amplitudes, nearly harmonic (or sub-harmonic) period ratios, high pulsational overtones and Am spectral types. This is unusual for both Am and δ\delta Sct pulsators, making these stars interesting objects.Comment: 9 pages, 6 Figures, Accepted for publication in MNRA

    Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    Get PDF
    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic

    Remarks on the chemical Fokker-Planck and Langevin equations: Nonphysical currents at equilibrium

    Get PDF
    The chemical Langevin equation and the associated chemical Fokker-Planck equation are wellknown continuous approximations of the discrete stochastic evolution of reaction networks. In this work, we show that these approximations suffer from a physical inconsistency, namely, the presence of nonphysical probability currents at the thermal equilibrium even for closed and fully detailedbalanced kinetic schemes. An illustration is given for a model case

    Self-Averaging Scaling Limits of Two-Frequency Wigner Distribution for Random Paraxial Waves

    Get PDF
    Two-frequency Wigner distribution is introduced to capture the asymptotic behavior of the space-frequency correlation of paraxial waves in the radiative transfer limits. The scaling limits give rises to deterministic transport-like equations. Depending on the ratio of the wavelength to the correlation length the limiting equation is either a Boltzmann-like integral equation or a Fokker-Planck-like differential equation in the phase space. The solutions to these equations have a probabilistic representation which can be simulated by Monte Carlo method. When the medium fluctuates more rapidly in the longitudinal direction, the corresponding Fokker-Planck-like equation can be solved exactly.Comment: typos correcte

    Far and mid infrared observations of two ultracompact H II regions and one compact CO clump

    Get PDF
    Two ultracompact H II regions (IRAS 19181+1349 and 20178+4046) and one compact molecular clump (20286+4105) have been observed at far infrared wavelengths using the TIFR 1 m balloon-borne telescope and at mid infrared wavelengths using ISO. Far infrared observations have been made simultaneously in two bands with effective wavelengths of ~ 150 and ~ 210 micron, using liquid 3He cooled bolometer arrays. ISO observations have been made in seven spectral bands using the ISOCAM instrument; four of these bands cover the emission from Polycyclic Aromatic Hydrocarbon (PAH) molecules. In addition, IRAS survey data for these sources in the four IRAS bands have been processed using the HIRES routine. In the high resolution mid infrared maps as well as far infrared maps multiple embedded energy sources have been resolved. There are structural similarities between the images in the mid infrared and the large scale maps in the far infrared bands, despite very different angular resolutions of the two. Dust temperature and optical depth (tau_150 um) maps have also been generated using the data from balloon-borne observations. Spectral energy distributions (SEDs) for these sources have been constructed by combining the data from all these observations. Radiation transfer calculations have been made to understand these SEDs. Parameters for the dust envelopes in these sources have been derived by fitting the observed SEDs. In particular, it has been found that radial density distribution for three sources is diffrent. Whereas in the case of IRAS 20178+4046, a steep distribution of the form r^-2 is favoured, for IRAS 20286+4105 it is r^-1 and for IRAS 19181+1349 it the uniform distribution (r^0). Line ratios for PAH bands have generally been found to be similar to those for other compact H II regions but different from general H II regions.Comment: To appear in Astronomy & Astrophysics; (19 pages including 14 Figures and 6 Tables
    corecore