2,727 research outputs found

    An empirical initial-final mass relation from hot, massive white dwarfs in NGC 2168 (M35)

    Full text link
    The relation between the zero-age main sequence mass of a star and its white-dwarf remnant (the initial-final mass relation) is a powerful tool for exploration of mass loss processes during stellar evolution. We present an empirical derivation of the initial-final mass relation based on spectroscopic analysis of seven massive white dwarfs in NGC 2168 (M35). Using an internally consistent data set, we show that the resultant white dwarf mass increases monotonically with progenitor mass for masses greater than 4 solar masses, one of the first open clusters to show this trend. We also find two massive white dwarfs foreground to the cluster that are otherwise consistent with cluster membership. These white dwarfs can be explained as former cluster members moving steadily away from the cluster at speeds of <~0.5 km/s since their formation and may provide the first direct evidence of the loss of white dwarfs from open clusters. Based on these data alone, we constrain the upper mass limit of WD progenitors to be >=5.8 solar masses at the 90% confidence level for a cluster age of 150 Myr.Comment: 14 pages, 3 figures. Accepted for publication in the Astrophysical Journal Letters. Contains some acknowledgements not in accepted version (for space reasons), otherwise identical to accepted versio

    Variability in Hot Carbon-Dominated Atmosphere (hot DQ) White Dwarfs: Rapid Rotation?

    Full text link
    Hot white dwarfs with carbon-dominated atmospheres (hot DQs) are a cryptic class of white dwarfs. In addition to their deficiency of hydrogen and helium, most of these stars are highly magnetic, and a large fraction vary in luminosity. This variability has been ascribed to nonradial pulsations, but increasing data call this explanation into question. We present studies of short-term variability in seven hot DQ white dwarfs. Three (SDSS J1426+5752, SDSS J2200-0741, and SDSS J2348-0942) were known to be variable. Their photometric modulations are coherent over at least two years, and we find no evidence for variability at frequencies that are not harmonics. We present the first time-series photometry for three additional hot DQs (SDSS J0236-0734, SDSS J1402+3818, and SDSS J1615+4543); none are observed to vary, but the signal-to-noise is low. Finally, we present high speed photometry for SDSS J0005-1002, known to exhibit a 2.1 d photometric variation; we do not observe any short-term variability. Monoperiodicity is rare among pulsating white dwarfs, so we contemplate whether the photometric variability is due to rotation rather than pulsations; similar hypotheses have been raised by other researchers. If the variability is due to rotation, then hot DQ white dwarfs as a class contain many rapid rotators. Given the lack of companions to these stars, the origin of any fast rotation is unclear -- both massive progenitor stars and double degenerate merger remnants are possibilities. We end with suggestions on future work that would best clarify the nature of these rare, intriguing objects.Comment: 9 pages, 7 figures; accepted for publication in the Astrophysical Journa

    Selectivity of C−H vs. C−F Bond Oxygenation by Homo- and Heterometallic Fe_4, Fe_3Mn, and Mn_4 Clusters

    Get PDF
    A series of tetranuclear [LM_3(HFArPz)_3OM'][OTf]_2 (M, M' = Fe or Mn) clusters that displays 3-(2-fluorophenyl)pyrazolate (HFArPz) as bridging ligand is reported. With these complexes manganese is demonstrated to facilitate C(sp^2)−F bond oxygenation via a putative terminal metal-oxo species. Moreover, the presence of both ortho C(sp^2)−H and C(sp^2)−F bonds in proximity provides an opportunity to investigate the selectivity of intramolecular C(sp^2)−X bond oxygenation (X = H or F) in these isostructural compounds. With iron as the apical metal center (M' = Fe) C(sp^2)−F bond oxygenation occurs almost exclusively, whereas with manganese (M' = Mn) the opposite reactivity is preferred

    Intramolecular C–H and C–F Bond Oxygenation by Site-Differentiated Tetranuclear Manganese Models of the OEC

    Get PDF
    The dangler manganese center in the oxygen-evolving complex (OEC) of photosystem II plays an important role in the oxidation of water to dioxygen. Inspired by the structure of the OEC, we synthesized a series of site-differentiated tetra-manganese clusters [LMn_3(PhPz)_3OMn][OTf]_x (2: x= 2; 3: x = 1) that features an apical manganese ion—distinct from the others—that is appended to a trinuclear manganese core through an μ4-oxygen atom bridge. This cluster design was targeted to facilitate studies of high-valent Mn-oxo formation, which is a proposed step in the mechanism for water oxidation by the OEC. Terminal Mn-oxo species—supported by a multinuclear motif—were targeted by treating 2 and 3 with iodosobenzene. Akin to our previously reported iron complexes, intramolecular arene hydroxylation was observed to yield the C–H bond oxygenated complexes [LMn3(PhPz)_2(OArPz)OMn][OTf]x (5: x = 2; 6: x = 1). The fluorinated series [LMn_3(F_2ArPz)_3OMn][OTf]_x (8: x = 2; 9: x = 1) was also synthesized to mitigate the observed intramolecular hydroxylation. Treatment of 8 and 9 with iodosobenzene results in intramolecular arene C–F bond oxygenation as judged by electrospray ionization mass spectrometry. The observed aromatic C–H and C–F hydroxylation is suggestive of a putative high-valent terminal metal-oxo species, and it is one of the very few examples capable of oxygenating C–F bonds

    Responsive and In situ-forming chitosan scaffolds for bone tissue engineering applications : an overview of the last decade

    Get PDF
    The use of bioabsorbable polymeric scaffolds is being investigated for use in bone tissue engineering applications, as their properties can be tailored to allow them to degrade and integrate at optimal rates as bone remodelling is completed. The main goal of this review is to highlight the “intelligent” properties exhibited by chitosan scaffolds and their use in the bone tissue engineering field. To complement the fast evolution of the bone tissue engineering field, it is important to propose the use of responsive scaffolds and take advantage of bioinspired materials and their properties as emerging technologies. There is a growing interest and need for new biomaterials, such as “smart”/responsive materials with the capability to respond to changes in the in vivo environment. This review will provide an overview of strategies that can modulate bone tissue regeneration by using in situ-forming scaffolds

    A Gravitational Redshift Determination of the Mean Mass of White Dwarfs. DBA and DB Stars

    Full text link
    We measure apparent velocities (v_app) of absorption lines for 36 white dwarfs (WDs) with helium-dominated atmospheres -- 16 DBAs and 20 DBs -- using optical spectra taken for the European Southern Observatory SN Ia progenitor survey (SPY). We find a difference of 6.9+/-6.9 km/s in the average apparent velocity of the H-alpha lines versus that of the HeI 5876AA for our DBAs. This is a measure of the blueshift of this He line due to pressure effects. By using this as a correction, we extend the gravitational redshift method employed by Falcon et al. (2010) to use the apparent velocity of the HeI 5876AA line and conduct the first gravitational redshift investigation of a group of WDs without visible hydrogen lines. We use biweight estimators to find an average apparent velocity, _BI, (and hence average gravitational redshift, _BI) for our WDs; from that we derive an average mass, _BI. For the DBAs, we find _BI = 40.8+/-4.7 km/s and derive _BI = 0.71 +0.04 -0.05 Msun. Though different from of DAs (32.57 km/s) at the 91% confidence level and suggestive of a larger DBA mean mass than that for normal DAs derived using the same method (0.647 +0.013 -0.014 Msun; Falcon et al. 2010), we do not claim this as a stringent detection. Rather, we emphasize that the difference between _BI of the DBAs and of normal DAs is no larger than 9.2 km/s, at the 95% confidence level; this corresponds to roughly 0.10 Msun. For the DBs, we find ^He_BI = 42.9+/-8.49 km/s after applying the blueshift correction and determine _BI = 0.74 +0.08 -0.09 Msun. The difference between ^He_BI of the DBs and of DAs is less than or equal to 11.5 km/s (~0.12 Msun), at the 95% confidence level. The gravitational redshift method indicates much larger mean masses than the spectroscopic determinations of the same sample by Voss et al. (2007)...Comment: Accepted to the Astrophysical Journal, 10 pages double-column, 3 figures, 5 table

    The Physics of Crystallization from Globular Cluster White Dwarf Stars in NGC 6397

    Get PDF
    We explore the physics of crystallization in the deep interiors of white dwarf stars using the color-magnitude diagram and luminosity function constructed from proper motion cleaned Hubble Space Telescope photometry of the globular cluster NGC 6397. We demonstrate that the data are consistent with the theory of crystallization of the ions in the interior of white dwarf stars and provide the first empirical evidence that the phase transition is first order: latent heat is released in the process of crystallization as predicted by van Horn (1968). We outline how this data can be used to observationally constrain the value of Gamma = E_{Coulomb}/E_{thermal} near the onset of crystallization, the central carbon/oxygen abundance, and the importance of phase separation.Comment: 5 pages, 5 figures, accepted for publication in the Astrophysical Journal Letter

    The Velocity Function of Galaxies

    Get PDF
    We present a galaxy circular velocity function, Psi(log v), derived from existing luminosity functions and luminosity-velocity relations. Such a velocity function is desirable for several reasons. First, it enables an objective comparison of luminosity functions obtained in different bands and for different galaxy morphologies, with a statistical correction for dust extinction. In addition, the velocity function simplifies comparison of observations with predictions from high-resolution cosmological N-body simulations. We derive velocity functions from five different data sets and find rough agreement among them, but about a factor of 2 variation in amplitude. These velocity functions are then compared with N-body simulations of a LCDM model (corrected for baryonic infall) in order to demonstrate both the utility and current limitations of this approach. The number density of dark matter halos and the slope of the velocity function near v_*, the circular velocity corresponding to an ~L_* spiral galaxy, are found to be comparable to that of observed galaxies. The primary sources of uncertainty in construction of Psi(log v) from observations and N-body simulations are discussed and explanations are suggected to account for these discrepancies.Comment: Latex. 28 pages, 4 figures. Accepted by Ap
    corecore