3,265 research outputs found

    The ratio FK/Fpi in QCD

    Get PDF
    We determine the ratio FK/Fpi in QCD with Nf=2+1 flavors of sea quarks, based on a series of lattice calculations with three different lattice spacings, large volumes and a simulated pion mass reaching down to about 190 MeV. We obtain FK/Fpi=1.192 +/- 0.007(stat) +/- 0.006(syst). This result is then used to give an updated value of the CKM matrix element |Vus|. The unitarity relation for the first row of this matrix is found to be well observed.Comment: 15 pages, 4 figures, 2 table

    Optimized Effective Potential Method in Current-Spin Density Functional Theory

    Full text link
    Current-spin density functional theory (CSDFT) provides a framework to describe interacting many-electron systems in a magnetic field which couples to both spin- and orbital-degrees of freedom. Unlike in usual (spin-) density functional theory, approximations to the exchange-correlation energy based on the model of the uniform electron gas face problems in practical applications. In this work, explicitly orbital-dependent functionals are used and a generalization of the Optimized Effective Potential (OEP) method to the CSDFT framework is presented. A simplifying approximation to the resulting integral equations for the exchange-correlation potentials is suggested. A detailed analysis of these equations is carried out for the case of open-shell atoms and numerical results are given using the exact-exchange energy functional. For zero external magnetic field, a small systematic lowering of the total energy for current-carrying states is observed due to the inclusion of the current in the Kohn-Sham scheme. For states without current, CSDFT results coincide with those of spin density functional theory.Comment: 11 pages, 3 figure

    Precision computation of the kaon bag parameter

    Get PDF
    Indirect CP violation in K \rightarrow {\pi}{\pi} decays plays a central role in constraining the flavor structure of the Standard Model (SM) and in the search for new physics. For many years the leading uncertainty in the SM prediction of this phenomenon was the one associated with the nonperturbative strong interaction dynamics in this process. Here we present a fully controlled lattice QCD calculation of these effects, which are described by the neutral kaon mixing parameter B_K . We use a two step HEX smeared clover-improved Wilson action, with four lattice spacings from a\approx0.054 fm to a\approx0.093 fm and pion masses at and even below the physical value. Nonperturbative renormalization is performed in the RI-MOM scheme, where we find that operator mixing induced by chiral symmetry breaking is very small. Using fully nonperturbative continuum running, we obtain our main result B_K^{RI}(3.5GeV)=0.531(6)_{stat}(2)_{sys}. A perturbative 2-loop conversion yields B_K^{MSbar-NDR}(2GeV)=0.564(6)_{stat}(3)_{sys}(6)_{PT}, which is in good agreement with current results from fits to experimental data.Comment: 10 pages, 7 figures. v2: Added one reference and one figure, replaced 2 figures for better readability and updated ensembles, conclusions unchanged. Final, published versio

    Exchange-correlation orbital functionals in current-density-functional theory: Application to a quantum dot in magnetic fields

    Full text link
    The description of interacting many-electron systems in external magnetic fields is considered in the framework of the optimized effective potential method extended to current-spin-density functional theory. As a case study, a two-dimensional quantum dot in external magnetic fields is investigated. Excellent agreement with quantum Monte Carlo results is obtained when self-interaction corrected correlation energies from the standard local spin-density approximation are added to exact-exchange results. Full self-consistency within the complete current-spin-density-functional framework is found to be of minor importance.Comment: 5 pages, 2 figures, submitted to PR

    The Effect of 45{\deg} Grain Boundaries and associated Fe particles on Jc and resistivity in Ba(Fe0.9Co0.1)2As2 Thin Films

    Full text link
    The anisotropy of the critical current density Jc depends in general on both the properties of the flux lines (such as line tension, coherence length and penetration depth) and the properties of the defects (such as density, shape, orientation etc.). Whereas the Jc anisotropy in microstructurally clean films can be scaled to an effective magnetic field containing the Ginzburg-Landau anisotropy term, it is in general not possible (or only in a limited field range) for samples containing extended defects. Here, the Jc anisotropy of a Co-doped BaFe2As2 sample with 45{\deg} [001] tilt grain boundaries (GBs), i.e. grain boundaries created by 45{\deg} in-plane rotated grains, as well as extended Fe particles is investigated. This microstructure leads to c-axis correlated pinning, both due to the GBs and the Fe particles and manifests in a c-axis peak in the Jc anisotropy at low magnetic fields and a deviation from the anisotropic Ginzburg-Landau scaling at higher fields. Strong pinning at ellipsoidal extended defects, i.e. the Fe particles, is discussed, and the full Jc anisotropy is fitted successfully with the vortex path model. The results are compared to a sample without GBs and Fe particles. 45{\deg} GBs seem to be good pinning centers rather than detrimental to current flow.Comment: 8 pages, 7 figures, CEC-ICMC 2013 proceeding, accepted for publication in Advances in Cryogenic Engineering (Materials

    Electromagnetic corrections to light hadron masses

    Get PDF
    At the precision reached in current lattice QCD calculations, electromagnetic effects are becoming numerically relevant. We will present preliminary results for electromagnetic corrections to light hadron masses, based on simulations in which a U(1)\mathrm{U}(1) degree of freedom is superimposed on Nf=2+1N_f=2+1 QCD configurations from the BMW collaboration.Comment: 7 pages, 2 figures, The XXVIII International Symposium on Lattice Field Theory, June 14-19,2010, Villasimius, Sardinia Ital

    Scaling behaviour of the critical current in clean epitaxial Ba(Fe1-xCox)2As2 thin films

    Full text link
    The angular-dependent critical current density, Jc(theta), and the upper critical field, Hc2(theta), of epitaxial Ba(Fe1-xCox)2As2 thin films have been investigated. No Jc(theta) peaks for H || c were observed regardless of temperatures and magnetic fields. In contrast, Jc(theta) showed a broad maximum at theta=90 degree, which arises from intrinsic pinning. All data except at theta=90 degree can be scaled by the Blatter plot. Hc2(theta) near Tc follows the anisotropic Ginzburg-Landau expression. The mass anisotropy increased from 1.5 to 2 with increasing temperature, which is an evidence for multi-band superconductivity.Comment: Accepted in Physical Review B rapid communication

    Highly anisotropic energy gap in superconducting Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} from optical conductivity measurements

    Full text link
    We have measured the complex dynamical conductivity, σ=σ1+iσ2\sigma = \sigma_{1} + i\sigma_{2}, of superconducting Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} (Tc=22T_{c} = 22 K) at terahertz frequencies and temperatures 2 - 30 K. In the frequency dependence of σ1\sigma_{1} below TcT_{c}, we observe clear signatures of the superconducting energy gap opening. The temperature dependence of σ1\sigma_{1} demonstrates a pronounced coherence peak at frequencies below 15 cm1^{-1} (1.8 meV). The temperature dependence of the penetration depth, calculated from σ2\sigma_{2}, shows power-law behavior at the lowest temperatures. Analysis of the conductivity data with a two-gap model, gives the smaller isotropic s-wave gap of ΔA=3\Delta_{A} = 3 meV, while the larger gap is highly anisotropic with possible nodes and its rms amplitude is Δ0=8\Delta_{0} = 8 meV. Overall, our results are consistent with a two-band superconductor with an s±s_{\pm} gap symmetry.Comment: 6 pages, 4 figures, discussion on pair-barking scattering and possible lifting of the nodes is adde

    Influenced of Fe buffer thickness on the crystalline quality and the transport properties of Fe/Ba(Fe1-xCox)2As2 bilayers

    Full text link
    The implementation of an Fe buffer layer is a promising way to obtain epitaxial growth of Co-doped BaFe2As2 (Ba-122). However, the crystalline quality and the superconducting properties of Co-doped Ba-122 are influenced by the Fe buffer layer thickness, dFe. The well-textured growth of the Fe/Ba-122 bilayer with dFe = 15 nm results in a high Jc of 0.45 MAcm2^{-2} at 12 K in self-field, whereas a low Jc value of 61000 Acm2^{-2} is recorded for the bilayer with dFe = 4 nm at the corresponding reduced temperature due to the presence of grain boundaries
    corecore