499 research outputs found

    Archiving of Wideband Plasma Wave Data

    Get PDF
    Beginning with the third year of funding, we began a more ambitious archiving production effort, minimizing work on new software and concentrating on building representative archives of the missions mentioned above, recognizing that only a small percentage of the data from any one mission can be archived with reasonable effort. We concentrated on data from Dynamics Explorer and ISEE 1, archiving orbits or significant fractions of orbits which attempt to capture the essence of the mission and provide data which will hopefully be sufficient for ongoing and new research as well as to provide a reference to upcoming and current ISTP missions which will not fly in the same regions of space as the older missions and which will not have continuous wideband data. We archived approximately 181 Gigabytes of data, accounting for some 1582 hours of data. Included in these data are all of the AMPTE chemical releases, all of the Spacelab 2/PDP data obtained during the free-flight portion of its mission, as well as significant portions of the S3, DE-1, Imp-6, Hawkeye, Injun 5, and ISEE 1 and 2 data sets. Table 1 summarizes these data. All of the data archived are summarized in gif-formatted images of frequency-time spectrograms which are directly accessible via the internet. Each of the gif files are identified by year, day, and time as described in the Web page. This provides a user with a specific date/time in mind a way of determining very quickly if there is data for the interval in question and, by clicking on the file name, browsing the data. Alternately, a user can browse the data for interesting features and events simply by viewing each of the gif files. When a user finds data of interest, he/she can notify us by email of the time period involved. Based on the user's needs, we can provide data on a convenient medium or by ftp, or we can mount the appropriate data and provide access to our analysis tools via the network. We can even produce products such as plots or spectrograms in hardcopy form based on the specific request of the user

    Interpretation of plasma diagnostics package results in terms of large space structure plasma interactions

    Get PDF
    The Plasma Diagnostics Package (PDP) is a spacecraft which was designed and built at The University of Iowa and which contained several scientific instruments. These instruments were used for measuring Space Shuttle Orbiter environmental parameters and plasma parameters. The PDP flew on two Space Shuttle flights. The first flight of the PDP was on Space Shuttle Mission STS-3 and was a part of the NASA/Office of Space Science payload (OSS-1). The second flight of the PDP was on Space Shuttle Mission STS/51F and was a part of Spacelab 2. The interpretation of both the OSS-1 and Spacelab 2 PDP results in terms of large space structure plasma interactions is emphasized

    Whistler mode waves upstream of Saturn

    Get PDF
    Whistler-mode waves are generated within and can propagate upstream of collisionless shocks. They are known to play a role in electron thermodynamics/acceleration and, under certain conditions, are markedly observed as wave trains preceding the shock ramp. In this paper, we take advantage of Cassini's presence at ~10 AU to explore the importance of whistler-mode waves in a parameter regime typically characterized by higher Mach number (median of ~14) shocks, as well as a significantly different IMF structure, compared to near Earth. We identify electromagnetic precursors preceding a small subset of bow shock crossings with properties which are consistent with whistler-mode waves. We find these monochromatic, low-frequency, circularly-polarized waves to have a typical frequency range of 0.2 - 0.4 Hz in the spacecraft frame. This is due to the lower ion and electron cyclotron frequencies near Saturn, between which whistler waves can develop. The waves are also observed as predominantly right-handed in the spacecraft frame, the opposite sense to what is typically observed near Earth. This is attributed to the weaker Doppler shift, owing to the large angle between the solar wind velocity and magnetic field vectors at 10 AU. Our results on the low occurrence of whistler waves upstream of Saturn also underpins the predominantly supercritical bow shock of Saturn.Comment: Published in Journal of Geophysical Research: Space Physics (January 2017) 21 pages, 4 figure

    Large scale motions of Neptune's bow shock: Evidence for control of the shock position by the rotation phase of Neptune's magnetic field

    Get PDF
    The Voyager 2 spacecraft observed high levels of Langmuir waves before the inbound crossing of Neptune's bow shock, thereby signifying magnetic connection of the bow shock. The Langmuir waves occurred in multiple bursts throughout two distinct periods separated by an 85 minute absence of wave activity. The times of onsets, peaks, and disappearances of the waves were used together with the magnetic field directions and spacecraft position, to perform a 'remote-sensing' analysis of the shape and location of Neptune's bow shock prior to the inbound bow shock crossing. The bow shock is assumed to have a parabolidal shape with a nose location and flaring parameter determined independently for each wave event. The remote-sensing analysis give a shock position consistent with the time of the inbound shock crossing. The flaring parameter of the shock remains approximately constant throughout each period of wave activity but differs by a factor of 10 between the two periods. The absence of waves between two periods of wave activity coincides with a large rotation of the magnetic field and a large increase in the solar wind ram pressure' both these effects lead to magnetic disconnection of the spacecraft from shock. The planetwards motion of the shock's nose from 38.5 R(sub N) to 34.5 R(sub N) during the second time period occurred while the solar wind ram pressure remained constant to within 15 percent. This second period of planetwards motion of the shock is therefore strong evidence for Neptune's bow shock moving in response to the rotation of Neptune's oblique, tilted magnetic dipole. Normalizing the ram pressure, the remotely-sensed shock moves sunwards during the first wave period and planetwards in the second wave period. The maximum standoff distance occurs while the dipole axis is close to being perpendicular to the Sun-Neptune direction. The remote-sensing analysis provides strong evidence that the location of Neptune's bow shock is controlled by Neptune's rotation phase

    Hybrid simulation of Titan's interaction with the supersonic solar wind during Cassini's T96 flyby

    Get PDF
    By applying a hybrid (kinetic ions and fluid electrons) simulation code, we study the plasma environment of Saturn's largest moon Titan during Cassini's T96 flyby on 1 December 2013. The T96 encounter marks the only observed event of the entire Cassini mission where Titan was located in the supersonic solar wind in front of Saturn's bow shock. Our simulations can quantitatively reproduce the key features of Cassini magnetic field and electron density observations during this encounter. We demonstrate that the large-scale features of Titan's induced magnetosphere during T96 can be described in terms of a steady state interaction with a high-pressure solar wind flow. About 40 min before the encounter, Cassini observed a rotation of the incident solar wind magnetic field by almost 90°. We provide strong evidence that this rotation left a bundle of fossilized magnetic field lines in Titan's ionosphere that was subsequently detected by the spacecraft.Fil: Feyerabend, Moritz. Georgia Institute Of Techology; Estados UnidosFil: Simon, Sven. Georgia Institute Of Techology; Estados UnidosFil: Neubauer, Fritz M.. Universitat Zu Köln; AlemaniaFil: Motschmann, Uwe. Deutsches Zentrum Fur Luft- Und Raumfahrt; Alemania. Technische Universitat Braunschweig; AlemaniaFil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Edberg, Niklas J. T.. Instiutet For Rymdfysik; SueciaFil: Hospodarsky, George B.. University Of Iowa; Estados UnidosFil: Kurth, William S.. University Of Iowa; Estados Unido

    Innovative interstellar explorer

    Get PDF
    An interstellar "precursor" mission has been under discussion in the scientific community for at least 30 years. Fundamental scientific questions about the interaction of the Sun with the interstellar medium can only be answered with in situ measurements that such a mission can provide. The Innovative Interstellar Explorer (IIE) and its use of Radioisotope Electric Propulsion (REP) is being studied under a NASA "Vision Mission" grant. Speed is provided by a combination of a high-energy launch, using current launch vehicle technology, a Jupiter gravity assist, and long-term, low-thrust, continuous acceleration provided by an ion thruster running off electricity provided by advanced radioisotope electric generators. A payload of ten instruments with an aggregate mass of ~35 kg and requiring ~30 W has been carefully chosen to address the compelling science questions. The nominal 20-day launch window opens on 22 October 2014 followed by a Jupiter gravity assist on 5 February 2016. The REP system accelerates the spacecraft to a "burnout" speed of 7.8 AU per year at 104 AU on 13 October 2032 (Voyager 1's current speed is ~3.6 AU/yr). The spacecraft will return at least 500 bits per second from at least 200 AU ~30 years after launch. Additional (backup) launch opportunities occur every 13 months to early 2018. In addition to addressing basic heliospheric science, the mission will ensure continued information on the far-heliospheric galactic cosmic ray population after the Voyagers have fallen silent and as the era of human Mars exploration begins

    Mars Aeronomy Observer: Report of the Science Working Team

    Get PDF
    The Mars Aeronomy Observer (MAO) is a candidate follow-on mission to Mars Observer (MO) in the Planetary Observer Program. The four Mariner and two Viking spacecraft sent to Mars between 1965 and 1976 have provided a wealth of information concerning Martian planetology. The Mars Observer, to be launched in 1990, will build on their results by further examining the elemental and mineralogical composition of the surface, the strength and multipolar composition of the planetary magnetic field, the gravitational field and topography, and the circulation of the lower atmosphere. The Mars Aeronomy Observer is intended to address the last major aspects of Martian environment which have yet to be investigated: the upper atmosphere, the ionsphere, and the solar wind interaction region

    An Estimate of the Dust Pickup Currents at Enceladus

    Get PDF
    The electrodynamic environment at Enceladus is often assumed to be driven exclusively by ions produced from the moon's south polar plume. In this presentation, we demonstrate that acceleration of moon-originating submicron dust by the reduced co-rotating E-field is capable of creating a substantial current perpendicular to the magnetic field. This pickup current may be comparable to the ion pickup current, and may be large enough to deflect the local magnetic field. We will analyze observations from the Langmuir Probe that is a component of Cassini's Radio and Plasma Wave Science (RPWS) package, along with associated plasma waves that reveal electron concentrations. We will especially examine the observations from the 12 March 2008 spacecraft passage by the body, where the spacecraft was moving primarily southward taking it along-side the jet/plume emitted from the south pole of the moon. The region of dust pickup is found to originate about 3-5 Enceladus radii northward of the moon, and extends to at least 10 radii southward of the moon. We attempt to quantify the dust pickup current and describe the effect the current might have on the overall magnetoplasma and E-field environment in the vicinity of the body
    corecore