48 research outputs found

    The hidden symbiotic star SU Lyn -- detection of flickering in U band

    Get PDF
    We report photometric observations of the hidden symbiotic star SU Lyn in the optical bands. In five nights we detect a weak flickering in U band with amplitude of about 0.05 magnitudes. No intranight variations are found in B, V, g' and r' bands. This is one more indication that the secondary component is a white dwarf accreting at low accretion rate. We also searched for intranight variability of a dozen related object (RR Boo, RT Boo, AM Cyg, AG Peg, BF Cyg, NQ Gem, StHa190, V627 Cas, XX Oph, FS Cet and Y Gem) in which no variability above the observational errors is detected.This work is part of the project KP-06-H28/2 08.12.2018 ”Binary stars with compact object” (Bulgarian National Science Fund). DM and BB acknowledge project RD-08-100/2022. JM and PLE acknowledge support from Programa Operativo FEDER 2014-2020 and Consejer´ıa de Econom´ıa y Conocimiento of Junta de Andaluc´ıa (Ref. 1380270)

    The January 2015 outburst of a red nova in M 31

    Get PDF
    Context. M31N 2015-01a (or M31LRN 2015) is a red nova that erupted in January 2015 – the first event of this kind observed in M31 since 1988. Very few similar events have been confirmed as of 2015. Most of them are considered to be products of stellar mergers.Aims. Results of an extensive optical monitoring of the transient in the period January-March 2015 are presented.Methods. Eight optical telescopes were used for imaging. Spectra were obtained on BTA, GTC and the Rozhen 2m telescope.Results. We present a highly accurate 70 d lightcurve and astrometry with a 0.05′′uncertainty. The color indices reached a minimum 2-3 d before peak brightness and rapidly increased afterwards. The spectral type changed from F5I to F0I in 6 d before the maximum and then to K3I in the next 30 d. The luminosity of the transient was estimated to 8.7+3.3 −2.2 × 105 L⊙ during the optical maximum.Conclusions. Both the photometric and the spectroscopic results confirm that the object is a red nova, similar to V838 Monocerotis

    The January 2015 outburst of a red nova in M31

    Full text link
    M31N 2015-01a (or M31LRN 2015) is a red nova that erupted in January 2015 -- the first event of this kind observed in M31 since 1988. Very few similar events have been confirmed as of 2015. Most of them are considered to be products of stellar mergers. Results of an extensive optical monitoring of the transient in the period January-March 2015 are presented. Eight optical telescopes were used for imaging. Spectra were obtained on BTA, GTC and the Rozhen 2m telescope. We present a highly accurate 70 d lightcurve and astrometry with a 0.05" uncertainty. The color indices reached a minimum 2-3 d before peak brightness and rapidly increased afterwards. The spectral type changed from F5I to F0I in 6 d before the maximum and then to K3I in the next 30 d. The luminosity of the transient was estimated to 8.72.2+3.3×105L8.7^{+3.3}_{-2.2}\times10^{5}L_{\odot} during the optical maximum. Both the photometric and the spectroscopic results confirm that the object is a red nova, similar to V838 Monocerotis.Comment: 5 pages, 4 figures, 4 tables, accepted for publication in Astronomy and Astrophysics as a Letter to the Editor; page 5 is online material onl

    A Luminous Red Nova in M31 and its Progenitor System

    Get PDF
    We present observations of M31LRN 2015 (MASTER OT J004207.99+405501.1), discovered in M31 in January 2015, and identified as a rare and enigmatic luminous red nova (LRN). Spectroscopic and photometric observations obtained by the Liverpool Telescope showed the LRN becoming extremely red as it faded from its M(V) = -9.4 +/- 0.2 peak. Early spectra showed strong Halpha emission that weakened over time as a number of absorption features appeared, including Na I D and Ba II. At later times strong TiO absorption bands were also seen. A search of archival Hubble Space Telescope data revealed a luminous red source to be the likely progenitor system, with pre-outburst Halpha emission also detected in ground-based data. The outburst of M31LRN 2015 shows many similarities, both spectroscopically and photometrically, with that of V838 Mon, the best studied LRN. We finally discuss the possible progenitor scenarios

    Optical intra-day variability of the blazar S5 0716+714

    Full text link
    We present an extensive recent multi-band optical photometric observations of the blazar S5 0716+714 carried out over 53 nights with two telescopes in India, two in Bulgaria, one in Serbia, and one in Egypt during 2019 November -- 2022 December. We collected 1401, 689, 14726, and 165 photometric image frames in B, V, R, and I bands, respectively. We montiored the blazar quasi-simultaneously during 3 nights in B, V, R, and I bands; 4 nights in B, V, and R; 2 nights in V, R, and I; 5 nights in B and R; and 2 nights in V and R bands. We also took 37 nights of data only in R band. Single band data are used to study intraday flux variability and two or more bands quasi-simultaneous observations allow us to search for colour variation in the source. We employ the power-enhanced F-test and the nested ANOVA test to search for genuine flux and color variations in the light curves of the blazar on intraday timescales. Out of 12, 11, 53, and 5 nights observations, intraday variations with amplitudes between ~3% and ~20% are detected in 9, 8, 31 and 3 nights in B, V, R, and I bands, respectively, corresponding to duty cycles of 75%, 73%, 58% and 60%. These duty cycles are lower than those typically measured at earlier times. On these timescales color variations with both bluer-when-brighter and redder-when-brighter are seen, though nights with no measurable colour variation are also present. We briefly discuss possible explanations for this observed intraday variability.Comment: 19 pages, 5 figures, 4 tables, Accepted for Publication in MNRA

    Spitzer + VLTI-GRAVITY Measure the Lens Mass of a Nearby Microlensing Event

    Get PDF
    We report the lens mass and distance measurements of the nearby microlensing event TCP J05074264+2447555. We measure the microlens parallax vector πE{\pi}_{\rm E} using Spitzer and ground-based light curves with constraints on the direction of lens-source relative proper motion derived from Very Large Telescope Interferometer (VLTI) GRAVITY observations. Combining this πE{\pi}_{\rm E} determination with the angular Einstein radius θE\theta_{\rm E} measured by VLTI GRAVITY observations, we find that the lens is a star with mass ML=0.495±0.063 MM_{\rm L} = 0.495 \pm 0.063~M_{\odot} at a distance DL=429±21 pcD_{\rm L} = 429 \pm 21~{\rm pc}. We find that the blended light basically all comes from the lens. The lens-source proper motion is μrel,hel=26.55±0.36 masyr1\mu_{\rm rel,hel} = 26.55 \pm 0.36~{\rm mas\,yr^{-1}}, so with currently available adaptive-optics (AO) instruments, the lens and source can be resolved in 2021. This is the first microlensing event whose lens mass is unambiguously measured by interferometry + satellite parallax observations, which opens a new window for mass measurements of isolated objects such as stellar-mass black holes.Comment: 3 Figures and 6 Tables Submitted to AAS Journa
    corecore