5 research outputs found

    The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source

    Get PDF
    Iodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O-3 surface concentrations. Although iodic acid (HIO3) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved. Here, in CLOUD atmospheric simulation chamber experiments that generate iodine radicals at atmospherically relevant rates, we show that iodooxy hypoiodite, IOIO, is efficiently converted into HIO3 via reactions (R1) IOIO + O-3 -> IOIO4 and (R2) IOIO4 + H2O -> HIO3 + HOI + O-(1)(2). The laboratory-derived reaction rate coefficients are corroborated by theory and shown to explain field observations of daytime HIO3 in the remote lower free troposphere. The mechanism provides a missing link between iodine sources and particle formation. Because particulate iodate is readily reduced, recycling iodine back into the gas phase, our results suggest a catalytic role of iodine in aerosol formation.Peer reviewe

    Effect of Bisulfate, Ammonia, and Ammonium on the Clustering of Organic Acids and Sulfuric Acid

    Get PDF
    We investigate the effect of the bisulfate anion HSO4-, ammonium cation NH4+, and ammonia NH3 on the clustering of sulfuric acid and pinic acid or 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA). The systems were chosen based on their expected relevance in atmospheric new particle formation. Using quantum chemical methods together with kinetic calculations, we study the ability of these compounds to enhance cluster formation and growth. The cluster structures are obtained and frequencies are calculated using three different DFT functionals (M06-2X, PW91, and omega B97X-D) with the 6-31++G(d,p) basis set. The electronic energies are corrected using an accurate DLPNO-CCSD(T)/def2-QZVPP level of theory. The evaporation rates are evaluated based on the calculated Gibbs free energies. The interaction between the ions and sulfuric acid or carboxylic acid group is strong, and thereby small two-component ionic clusters are found to be very stable against evaporation. The presence of bisulfate stimulates the cluster formation through addition of the sulfuric acid, whereas the presence of ammonium favors the addition of organic acids. Bisulfate and ammonium enhance the first steps of cluster formation; however, at atmospheric conditions further cluster growth is limited due to the weak interaction and fast evaporation of the larger three-component clusters. On the basis of our results it is therefore unlikely that the studied organic acids and sulfuric acid, even together with bisulfate, ammonia, or ammonium can drive new-particle formation via clustering mechanisms. Other mechanisms such as chemical reactions are needed to explain observed new-particle formation events in the presence of oxidized organic compounds resembling the acids studied here.Peer reviewe

    Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method

    Get PDF
    Ions enhance the formation rate of atmospheric aerosol particles, which play an important role in Earth's radiative balance. Ion-induced nucleation involves the stepwise accretion of neutral monomers onto a molecular cluster containing an ion, which helps to stabilize the cluster against evaporation. Although theoretical frameworks exist to calculate the collision rate coefficients between neutral molecules and ions, they need to be experimentally confirmed, ideally under atmospherically relevant conditions of around 1000 ion pairs cm(-3). Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we have measured the collision rate coefficients between neutral iodic acid (HIO3) monomers and charged iodic acid molecular clusters containing up to 11 iodine atoms. Three methods were analytically derived to calculate ion-polar molecule collision rate coefficients. After evaluation with a kinetic model, the 50% appearance time method is found to be the most robust. The measured collision rate coefficient, averaged over all iodine clusters, is (2.4 +/- 0.8)x10(-9 )cm(3) s(-1), which is close to the expectation from the surface charge capture theory.Peer reviewe
    corecore