21 research outputs found

    Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise

    Get PDF
    Interactions between co-existing microorganisms deeply affect the physiology of the involved organisms and, ultimately, the function of the ecosystem as a whole. Copiotrophic Alteromonas are marine gammaproteobacteria that thrive during the late stages of phytoplankton blooms in the marine environment and in laboratory co-cultures with cyanobacteria such as Trichodesmium. The response of this heterotroph to the sometimes rapid and transient changes in nutrient supply when the phototroph crashes is not well understood. Here, we isolated and sequenced the strain Alteromonas macleodii str. Te101 from a laboratory culture of Trichodesmium erythraeum IMS101, yielding a chromosome of 4.63 Mb and a single plasmid of 237 kb. Increasing salinities to ≥43 ppt inhibited the growth of Trichodesmium but stimulated growth of the associated Alteromonas. We characterized the transcriptomic responses of both microorganisms and identified the complement of active transcriptional start sites in Alteromonas at single-nucleotide resolution. In replicate cultures, a similar set of genes became activated in Alteromonas when growth rates of Trichodesmium declined and mortality was high. The parallel activation of fliA, rpoS and of flagellar assembly and growth-related genes indicated that Alteromonas might have increased cell motility, growth, and multiple biosynthetic activities. Genes with the highest expression in the data set were three small RNAs (Aln1a-c) that were identified as analogs of the small RNAs CsrB-C in E. coli or RsmX-Z in pathogenic bacteria. Together with the carbon storage protein A (CsrA) homolog Te101_05290, these RNAs likely control the expression of numerous genes in responding to changes in the environmentThis work was supported by the EU project MaCuMBA (grant agreement no. 311975) to WRH and FRVby the German Israeli Foundation grant no. 1133 to IB-F and WRHSupport of ML-P by a postdoctoral fellowship from the Valencian Consellería de Educació, Investigació, Cultura i Esport (APOSTD/2016/051)of SH by the China Scholarship Council is gratefully acknowledged

    Sequential Delivery of Host-Induced Virulence Effectors by Appressoria and Intracellular Hyphae of the Phytopathogen Colletotrichum higginsianum

    Get PDF
    Phytopathogens secrete effector proteins to manipulate their hosts for effective colonization. Hemibiotrophic fungi must maintain host viability during initial biotrophic growth and elicit host death for subsequent necrotrophic growth. To identify effectors mediating these opposing processes, we deeply sequenced the transcriptome of Colletotrichum higginsianum infecting Arabidopsis. Most effector genes are host-induced and expressed in consecutive waves associated with pathogenic transitions, indicating distinct effector suites are deployed at each stage. Using fluorescent protein tagging and transmission electron microscopy-immunogold labelling, we found effectors localised to stage-specific compartments at the host-pathogen interface. In particular, we show effectors are focally secreted from appressorial penetration pores before host invasion, revealing new levels of functional complexity for this fungal organ. Furthermore, we demonstrate that antagonistic effectors either induce or suppress plant cell death. Based on these results we conclude that hemibiotrophy in Colletotrichum is orchestrated through the coordinated expression of antagonistic effectors supporting either cell viability or cell death

    Nucleic acid secondary structure prediction and display

    No full text

    <it>Cis</it>-motifs upstream of the transcription and translation initiation sites are effectively revealed by their positional disequilibrium in eukaryote genomes using frequency distribution curves

    No full text
    Abstract Background The discovery of cis-regulatory motifs still remains a challenging task even though the number of sequenced genomes is constantly growing. Computational analyses using pattern search algorithms have been valuable in phylogenetic footprinting approaches as have expression profile experiments to predict co-occurring motifs. Surprisingly little is known about the nature of cis-regulatory element (CRE) distribution in promoters. Results In this paper we used the Motif Mapper open-source collection of visual basic scripts for the analysis of motifs in any aligned set of DNA sequences. We focused on promoter motif distribution curves to identify positional over-representation of DNA motifs. Using differentially aligned datasets from the model species Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster and Saccharomyces cerevisiae, we convincingly demonstrated the importance of the position and orientation for motif discovery. Analysis with known CREs and all possible hexanucleotides showed that some functional elements gather close to the transcription and translation initiation sites and that elements other than the TATA-box motif are conserved between eukaryote promoters. While a high background frequency usually decreases the effectiveness of such an enumerative investigation, we improved our analysis by conducting motif distribution maps using large datasets. Conclusion This is the first study to reveal positional over-representation of CREs and promoter motifs in a cross-species approach. CREs and motifs shared between eukaryotic promoters support the observation that an eukaryotic promoter structure has been conserved throughout evolutionary time. Furthermore, with the information on positional enrichment of a motif or a known functional CRE, it is possible to get a more detailed insight into where an element appears to function. This in turn might accelerate the in depth examination of known and yet unknown cis-regulatory sequences in the laboratory.</p

    Characterization of Antirrhinum Petal Development and Identification of Target Genes of the Class B MADS Box Gene DEFICIENS

    No full text
    The class B MADS box transcription factors DEFICIENS (DEF) and GLOBOSA (GLO) of Antirrhinum majus together control the organogenesis of petals and stamens. Toward an understanding of how the downstream molecular mechanisms controlled by DEF contribute to petal organogenesis, we conducted expression profiling experiments using macroarrays comprising >11,600 annotated Antirrhinum unigenes. First, four late petal developmental stages were compared with sepals. More than 500 ESTs were identified that comprise a large number of stage-specifically regulated genes and reveal a highly dynamic transcriptional regulation. For identification of DEF target genes that might be directly controlled by DEF, we took advantage of the temperature-sensitive def-101 mutant. To enhance the sensitivity of the profiling experiments, one petal developmental stage was selected, characterized by increased transcriptome changes that reflect the onset of cell elongation processes replacing cell division processes. Upon reduction of the DEF function, 49 upregulated and 52 downregulated petal target genes were recovered. Eight target genes were further characterized in detail by RT-PCR and in situ studies. Expression of genes responding rapidly toward an altered DEF activity is confined to different petal tissues, demonstrating the complexity of the DEF function regulating diverse basic processes throughout petal morphogenesis

    High-Throughput Confocal Imaging of Intact Live Tissue Enables Quantification of Membrane Trafficking in Arabidopsis

    No full text
    Membrane compartmentalization and trafficking within and between cells is considered an essential cellular property of higher eukaryotes. We established a high-throughput imaging method suitable for the quantitative detection of membrane compartments at subcellular resolution in intact epidermal tissue. Whole Arabidopsis (Arabidopsis thaliana) cotyledon leaves were subjected to quantitative confocal laser microscopy using automated image acquisition, computational pattern recognition, and quantification of membrane compartments. This revealed that our method is sensitive and reliable to detect distinct endomembrane compartments. We applied quantitative confocal laser microscopy to a transgenic line expressing GFP-2xFYVE as a marker for endosomal compartments during biotic or abiotic stresses, and detected markedly quantitative adaptations in response to changing environments. Using a transgenic line expressing the plasma membrane-resident syntaxin GFP-PEN1, we quantified the pathogen-inducible extracellular accumulation of this fusion protein at fungal entry sites. Our protocol provides a platform to study the quantitative and dynamic changes of endomembrane trafficking, and potential adaptations of this machinery to physiological stress

    A linkage map of an F2 hybrid population of Antirrhinum majus and A. molle.

    No full text
    To increase the utility of Antirrhinum for genetic and evolutionary studies, we constructed a molecular linkage map for an interspecific hybrid A. majus x A. molle. An F(2) population (n = 92) was genotyped at a minimum of 243 individual loci. Although distorted transmission ratios were observed at marker loci throughout the genome, a mapping strategy based on a fixed framework of codominant markers allowed the loci to be placed into eight robust linkage groups consistent with the haploid chromosome number of Antirrhinum. The mapped loci included 164 protein-coding genes and a similar number of unknown sequences mapped as AFLP, RFLP, ISTR, and ISSR markers. Inclusion of sequences from mutant loci allowed provisional alignment of classical and molecular linkage groups. The total map length was 613 cM with an average interval of 2.5 cM, but most of the loci were aggregated into clusters reducing the effective distance between markers. Potential causes of transmission ratio distortion and its effects on map construction were investigated. This first molecular linkage map for Antirrhinum should facilitate further mapping of mutations, major QTL, and other coding sequences in this model genus

    Supplementary Datasets for "Benefit from decline: The primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise"

    Get PDF
    <p>This file set contains supplementary dataset for paper "Hou, S.<i> et al.</i> <b>Benefit from decline: The primary transcriptome of <i>Alteromonas macleodii </i>str. Te101 during <i>Trichodesmium</i> demise</b>. (<i>accepted</i>)." Please refer to this paper for more information.</p><p><b><u><br></u></b></p><p><b><u>File Description:</u></b></p><p><b>Supplemental Dataset S1:</b> Genome-wide visualization of predicted TSS and coverage for the genome of <i>Alteromonas</i> <i>macleodii</i> str. Te101.</p><p><b>Supplementary Dataset 2: </b>Genome-wide GO assignments of <i>Alteromonas</i> <i>macleodii</i> str. Te101 proteins.</p><div><br></div><div><br></div><div><div><b><u>How To Cite This Dataset:</u></b></div><div><br></div><div>If you find this dataset useful to your research, please consider to cite the main paper: </div><div>Hou, S. <i>et al</i>. <b>Benefit from decline: The primary transcriptome of <i>Alteromonas macleodii</i> str. Te101 when <i>Trichodesmium</i> collapses.</b> (<i>accepted</i>)</div><div><br></div><div><br></div></div
    corecore